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Abstract

We recall definition of (small) quantum cohomology of Grassmanni-
ans following [Be], give technical details and then give elementary proofs
of the main theorems about the quantum cohomology of Grassmannians
following Buch’s paper ([Bu]). Namely, we prove quantum Giambelli
and quantum Pieri formulas and the presentation of quantum cohomol-
ogy ring.

1 Recollections on cohomologies of Grassman-
ninans

1.1 Main definitions

Let us fix some notations. Pick 𝑙, 𝑛 ∈ Z>0, 𝑙 6 𝑛 and let 𝑉 be a vector
space of dimension 𝑛 over complex numbers. We denote by Gr(𝑙, 𝑉 ) the
Grassmanian parametrizing 𝑙-dimensional subspaces 𝑊 ⊂ 𝑉 . We denote
by 𝜄 : Gr(𝑙, 𝑉 ) →˓ P(Λ𝑙(𝑉 )) the Plüker embedding which sends 𝑊 ⊂ 𝑉 to
Λ𝑙(𝑊 ) ∈ P(Λ𝑙(𝑉 )). One can show that Gr(𝑙, 𝑉 ) is a complex projective
algebraic variety of dimension 𝑙𝑘, here 𝑘 := 𝑛− 𝑙.

Note that we have the natural left action GL(𝑉 ) y Gr(𝑙, 𝑉 ): element
𝑔 ∈ GL(𝑉 ) sends 𝑊 ∈ Gr(𝑙, 𝑉 ) to 𝑔(𝑊 ) ∈ Gr(𝑙, 𝑉 ). It is clear that this
action is transitive. Let us fix any point 𝑈 ∈ Gr(𝑙, 𝑉 ) and denote by
𝑃 ⊂ GL(𝑉 ) the stabilizer of 𝑈 . Then we have the natural identification
𝐺/𝑃 ∼−→ Gr(𝑙, 𝑉 ), 𝑔 ↦→ 𝑔(𝑈) which we will use later to define the tautologi-
cal bundle on Gr(𝑙, 𝑉 ).
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Let us denote by 𝑃 (𝑙 × 𝑘) the set of 𝑙-tuples of integers (𝜆1, 𝜆2, . . . , 𝜆𝑙)
such that 𝑘 > 𝜆1 > . . . > 𝜆𝑙 > 0. Note that 𝑃 (𝑙 × 𝑘) is nothing else but the
set of partitions which lie in the rectangle 𝑙×𝑘. For a flag 𝐹∙ and 𝜆 ∈ 𝑃 (𝑙×𝑘)
we define the Schubert cell Ω∘

𝜆(𝐹∙) ⊂ Gr(𝑙, 𝑉 ) as follows:

Ω∘
𝜆(𝐹∙) := {𝑊 ∈ Gr(𝑙, 𝑉 ) | dim(𝑊 ∩ 𝐹𝑘−𝑖+𝜆𝑖

) = 𝑖 ∀ 𝑖 = 1, . . . , 𝑙}.

Schubert cell Ω∘
𝜆(𝐹∙) has codimension |𝜆| in Gr(𝑙, 𝑉 ), and is isomorphic to

A𝑙𝑘−|𝜆|. We have a disjoint decomposition

Gr(𝑙, 𝑉 ) =
⨆︁

𝜆∈𝑃 (𝑙×𝑘)

Ω∘
𝜆(𝐹∙).

To each 𝜆 ∈ 𝑃 (𝑙× 𝑘) we can also associate a Schubert variety which can
be defined as follows:

Ω𝜆(𝐹∙) := {𝑊 ∈ Gr(𝑙, 𝑉 ) | dim(𝑊 ∩ 𝐹𝑘−𝑖+𝜆𝑖
) > 𝑖 ∀ 𝑖 = 1, . . . , 𝑙}.

Varieties Ω𝜆(𝐹∙) are closed subvarieties of Gr(𝑙, 𝑉 ) of codimension |𝜆|, we
can also describe Ω𝜆(𝐹∙) as the Zariski closure of Ω∘

𝜆(𝐹∙).

Example 1.1. For 𝑙 = 1 we have Gr(𝑙, 𝑉 ) = P𝑛−1 and Schubert varieties
are parametrized by numbers 0 6 𝑎 6 𝑛− 1. Schubert variety corresponding
to 0 6 𝑎 6 𝑛− 1 and a flag 𝐹∙ is precisely P(𝐹𝑛−𝑎) ⊂ P(𝑉 ).

For 𝜆 ∈ 𝑃 (𝑙 × 𝑘) we denote by 𝜎𝜆 ∈ 𝐻2|𝜆|(Gr(𝑙, 𝑉 ),Z) the cohomology
class of Ω𝜆(𝐹∙) (note that it does not depend on 𝐹∙ since for any two flags
𝐹∙, 𝐹

′
∙ there exists 𝑔 ∈ GL(𝑉 ) such that 𝑔(𝐹∙) = 𝐹 ′

∙ so 𝑔(Ω𝜆(𝐹∙)) = Ω𝜆(𝐹 ′
∙)

and now it remains to note that GL(𝑉 ) is connected). For 𝜆1, 𝜆2, . . . , 𝜆𝑁 ∈
𝑃 (𝑙 × 𝑘) we denote by ⟨Ω𝜆1 , . . . ,Ω𝜆𝑁

⟩ ∈ Z the intersection pairing of these
subvarieties of Gr(𝑙, 𝑉 ) (which is by the definition zero if |𝜆1| + . . .+ |𝜆𝑁 | ≠
dim Gr(𝑙, 𝑉 ) = 𝑙𝑘).

For a partition 𝜆 ∈ 𝑃 (𝑙 × 𝑘) we denote by 𝜆𝑐 the following partition:
𝜆𝑐 = (𝑘 − 𝜆𝑙, 𝑘 − 𝜆𝑙−1, . . . , 𝑘 − 𝛼1). The following proposition is standard.

Proposition 1.2. For 𝜆, 𝜇 ∈ 𝑃 (𝑙 × 𝑘) we have

⟨Ω𝜆,Ω𝜇⟩ =

{︃
1 if 𝜆 = 𝜇𝑐

0 otherwise .
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Corollary 1.3. For any 𝜆1, 𝜆2, . . . , 𝜆𝑁 ∈ 𝑃 (𝑙 × 𝑘) we have

𝜎𝜆1 · . . . · 𝜎𝜆𝑁
=

∑︁
𝜇

⟨Ω𝜇𝑐 ,Ω𝜆1 , . . . ,Ω𝜆𝑁
⟩𝜎𝜇.

Proof. We can write 𝜎𝜆1 · . . . · 𝜎𝜆𝑁
=

∑︀
𝜇 𝑐𝜇𝜎𝜇 for some 𝑐𝜇 ∈ Z. It follows

from proposition 1.2 that 𝜎𝜇𝑐 · 𝜎𝜆1 · . . . · 𝜎𝜆𝑁
= 𝑐𝜇𝜎𝜇𝑐 · 𝜎𝜇. It again follows

from proposition 1.2 and definitions that

𝜎𝜇𝑐 · 𝜎𝜆1 · . . . · 𝜎𝜆𝑁
= ⟨Ω𝜇𝑐 ,Ω𝜆1 , . . . ,Ω𝜆𝑁

⟩𝜎𝜇𝑐 · 𝜎𝜇

and the claim follows.

1.2 Pieri and Giambelli formulas

To 1 > 𝑝 > 𝑘 we can associate a partition (𝑝, 0, 0, . . . , 0) ∈ 𝑃 (𝑙 × 𝑘) and
denote by Ω𝑝 the corresponding Schubert variety.

1.2.1 Pieri formula

Proposition 1.4. We have 𝜎𝑝 · 𝜎𝛼 =
∑︀

𝛽 𝜎𝛽, where the sum is taken over
all 𝛽 that can be obtained by adding 𝑖 boxes to 𝛼 with no two in the same
column.

Remark 1.5. Note that the Pieri formula is equivalent to the following state-
ment about intersection pairing of Schubert varieties. If 𝛼, 𝛽 ∈ 𝑃 (𝑙×𝑘), 0 6
𝑝 6 𝑘 are such that |𝛼| + |𝛽| + 𝑝 = dim Gr(𝑙, 𝑉 ) = 𝑙(𝑛− 𝑙) then

⟨Ω𝛼,Ω𝛽,Ω𝑝⟩ =

{︃
1 if 𝛼𝑖 + 𝛽𝑙−𝑖 > 𝑛− 𝑙 and 𝛼𝑖 + 𝛽𝑙+1−𝑖 6 𝑛− 𝑙

0, otherwise .

Indeed recall that
𝜎𝑝 · 𝜎𝛼 =

∑︁
𝛽

⟨Ω𝛼,Ω𝛽𝑐 ,Ω𝑝⟩𝜎𝛽.

Note now that 𝛽 can be obtained by adding 𝑝 boxes to 𝛼 with no two in
the same column iff 𝛽𝑖 > 𝛼𝑖 for every 𝑖 = 1, 2, . . . , 𝑙 and 𝛼𝑖 > 𝛽𝑖+1 for
𝑖 = 1, 2, . . . , 𝑙−1. . Recall now that 𝛽𝑐

𝑖 = 𝑛− 𝑙−𝛽𝑙+1−𝑖 i.e. 𝛽𝑖 = 𝑛− 𝑙−𝛽𝑐
𝑙+1−𝑖

for every 𝑖 = 1, 2, . . . , 𝑙. We conclude that the conditions 𝛽𝑖 > 𝛼𝑖, 𝛼𝑖 > 𝛽𝑖+1

are equivalent to 𝑛 − 𝑙 − 𝛽𝑐
𝑙+1−𝑖 > 𝛼𝑖, 𝛼𝑖 > 𝑛 − 𝑙 − 𝛽𝑐

𝑙−𝑖 i.e. 𝑛 − 𝑙 > 𝛼𝑖 +
𝛽𝑐
𝑙+1−𝑖, 𝛼𝑖 + 𝛽𝑐

𝑙−𝑖 > 𝑛− 𝑙 respectively and the claim follows.
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1.2.2 Giambelli formula

Let us now recall the classical Giambelli formula which allows to compute
Schubert classes 𝜎𝜆 in terms of Schubert classes 𝜎𝑎, 0 6 𝑎 6 𝑘.

Theorem 1.6. If 𝜆 is a partition contained in 𝑙×𝑘 rectangle then the Schu-
bert class 𝜎𝜆 in 𝐻*(Gr(𝑙, 𝑉 ),Z) is given by 𝜎𝜆 = det(𝜎𝜆𝑖+𝑗−𝑖), where 𝜎𝑖 = 0
for 𝑖 < 0 or 𝑖 > 𝑘.

Corollary 1.7. Ring 𝐻*(Gr(𝑙, 𝑉 ),Z) is generated (as an algebra over Z) by
Schubert classes 𝜎𝑎, 0 6 𝑎 6 𝑘.

1.3 Representation via generators and relations

We finish this section by recalling theorem which describes the ring𝐻*(Gr(𝑙, 𝑉 ),Z)
explicitly (using generators and relations).

Theorem 1.8. We have an isomorphism

𝐻*(Gr(𝑙, 𝑉 ),Z) ∼= Z[𝑥1, . . . , 𝑥𝑙, 𝑞]/(𝑦𝑘+1, . . . , 𝑦𝑛−1, 𝑦𝑛)

where 𝑦𝑝 := det(𝑐1+𝑗−𝑖)1≤𝑖,𝑗≤𝑝. Element 𝑥𝑖 corresponds to the 𝑖th Chern class
of the dual of the tautological bundle on Gr(𝑙, 𝑉 ).

2 Moduli spaces of rational curves and quan-
tum cohomology

We fix a flag 𝐹∙. Recall that 𝑋 = Gr(𝑙,𝑊 ) is covered by Schubert cells
Ω∘

𝜆(𝐹∙), where 𝜆 runs through partitions (𝜆1, 𝜆2, . . . , 𝜆𝑙) such that 𝑛 − 𝑙 >
𝜆1 > . . . > 𝜆𝑙 > 0, recall that we denote the set of such partitions by
𝑃 (𝑙× 𝑘). Recall also that we define Ω𝜆(𝐹∙) as the closure of Ω∘

𝜆(𝐹∙) and call
it a Schubert variety corresponding to 𝜆.

For each integer 𝑑 > 0 and the collection of partitions 𝜆1, . . . , 𝜆𝑁 we
will define the number ⟨Ω𝜆1 , . . . ,Ω𝜆𝑁

⟩𝑑 which can be thought as follows.
Choose generic points 𝑝1, . . . , 𝑝𝑁 ∈ P1 and generic flags 𝐹 1

∙ , . . . , 𝐹
𝑁
∙ . Then

⟨Ω𝜆1 , . . . ,Ω𝜆𝑁
⟩𝑑 is the number of algebraic morphisms 𝑓 : P1 → 𝑋 of degree

𝑑 such that 𝑓(𝑝𝑖) ∈ Ω𝜆𝑖
(𝐹 𝑖

∙) and is zero if the set of such maps is infinite.
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Remark 2.1. Note that Schubert varieties Ω𝜆(𝐹∙) differ from Ω𝜆𝑖
(𝐹 𝑖

∙) by the
action of some element 𝑔𝑖 ∈ GL(𝑉 ) so the varieties Ω𝜆𝑖

(𝐹 𝑖
∙) can be thought

as generic translates of the varieties Ω𝜆𝑖
(𝐹∙) respectively.

Remark 2.2. Note that for 𝑑 = 0 the number ⟨Ω𝜆1 , . . . ,Ω𝜆𝑁
⟩0 is just the

intersection number ⟨Ω𝜆1 , . . . ,Ω𝜆𝑁
⟩. Indeed morphism 𝑓 : P1 → 𝑋 of de-

gree 𝑑 should map whole P1 to some point 𝑥 ∈ 𝑋. Now from the condi-
tions 𝑓(𝑝𝑖) ∈ Ω𝜆𝑖

(𝐹 𝑖
∙) we conclude that 𝑝 ∈

⋂︀
𝑖 Ω𝜆𝑖

(𝐹 𝑖
∙) so ⟨Ω𝜆1 , . . . ,Ω𝜆𝑁

⟩0 =

#(
⋂︀𝑁

𝑖=1 Ω𝜆𝑖
(𝐹 𝑖

∙)) = ⟨Ω𝜆1 , . . . ,Ω𝜆𝑁
⟩, where the last equality holds since vari-

eties Ω𝜆𝑖
(𝐹∙),Ω𝜆𝑖

(𝐹 𝑖
∙) have the same cohomology classes in 𝐻*(Gr(𝑙, 𝑉 ),C)

since the differ by the action of some 𝑔𝑖 ∈ GL(𝑉 ) and GL(𝑉 ) is connected.

To give a rigorous definition of the number ⟨Ω𝜆1 , . . . ,Ω𝜆𝑁
⟩𝑑 for 𝑑 > 0

we need to understand how to think about the moduli space ℳ𝑑 of mor-
phisms of degree 𝑑 from P1 to 𝑋 geometrically. Note that for 𝑑 = 0
this space is naturally identifies with 𝑋 and by remark 2.2 we can define
⟨Ω𝜆1 , . . . ,Ω𝜆𝑁

⟩0 := ⟨Ω𝜆1 , . . . ,Ω𝜆𝑁
⟩. For 𝑑 > 0 we will analogically define

⟨Ω𝜆1 , . . . ,Ω𝜆𝑁
⟩𝑑 as an intersection pairing of certain varieties in a certain

compactification of ℳ𝑑.
To construct a scheme structure on ℳ𝑑 we will first of all describe the

functor Sch𝑜𝑝𝑝 → Set which it should represent and then will deduce from
classical Grothendieck results that this functor is indeed represented by some
smooth quasi-projective scheme of finite type. We start from recalling a
description of the functor

Sch𝑜𝑝𝑝 → Set, 𝑆 ↦→ Map(𝑆,Gr(𝑙, 𝑉 ))

which represents Grassmannian Gr(𝑙, 𝑉 ). Let 𝒰 be the tautological vector
bundle on Gr(𝑙, 𝑉 ) of rank 𝑙 which can be defined as follows. Recall the
identification Gr(𝑙, 𝑉 ) ≃ GL(𝑉 )/𝑃 and consider the standard representation
𝑃 y 𝑈 . Then we can form the associated vector bundle 𝒰 := GL(𝑉 ) *𝑃 𝑈
which we will call tautological.

Remark 2.3. Recall that if 𝐺 is an algebraic group and 𝐻 ⊂ 𝐺 is an algebraic
subgroup then to any finite dimensional representation 𝐻 y 𝑊 we can
associate a vector bundle 𝐺 *𝐻 𝑊 which can be defined as follows. We have
the following free right action 𝐺 × 𝑊 x 𝐻, (𝑔, 𝑤).ℎ = (𝑔ℎ, ℎ−1𝑤) then
𝐺 *𝐻 𝑊 := (𝐺 × 𝑊 )/𝐻. Note that 𝐺 *𝐻 𝑊 has the natural projection
morphism 𝐺 *𝐻 𝑊 → 𝐺/𝐻 which makes it a vector bundle.
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Remark 2.4. Note that if the action 𝐻 y 𝑊 can be extended to the action
𝐺 y 𝑊 then the vector bundle 𝐺 *𝐻 𝑊 is trivial. Indeed we have the
isomorphism (𝐺/𝐻) ×𝑊 ∼−→𝐺 *𝐻 𝑊 given by ([𝑔], 𝑤) ↦→ (𝑔, 𝑔−1𝑤).

Note that we have the natural embedding of vector bundles

𝒰 = GL(𝑉 ) *𝑃 𝑈 ˓˓→ GL(𝑉 ) *𝑃 𝑉 = 𝑉 ⊗𝒪𝑋

which corresponds to the embedding 𝑈 →˓ 𝑉 . Under this embedding fiber of
𝒰 over a point 𝑊 ∈ Gr(𝑙, 𝑉 ) identifies with 𝑊 ⊂ 𝑉 .

Vector bundle 𝒰 also has the following description which will be useful in
the proof of proposition 2.5. Recall the Plücker embedding

𝜄 : Gr(𝑙, 𝑉 ) →˓ P(Λ𝑙𝑉 ), 𝑊 ↦→ Λ𝑙𝑊.

Recall that we have a natural derivative (contraction) map

contr : Λ𝑙−1𝑉 * ⊗ Λ𝑙𝑉 → 𝑉, 𝑓 ⊗ 𝑣 ↦→ 𝜕𝑓 (𝑣).

Then the dual map contr* : 𝑉 * → Λ𝑘−1𝑉 ⊗ Λ𝑘𝑉 * gives us the morphism

𝑉 * ⊗𝒪P(Λ𝑙𝑉 ) → Λ𝑙−1𝑉 ⊗𝒪P(Λ𝑙𝑉 )(1)

induced by the isomorphism Γ(P(Λ𝑙𝑉 ),𝒪P(Λ𝑙𝑉 )(1)) ≃ Λ𝑙𝑉 *.
By taking duals it gives us the morphism

Φ: Λ𝑙−1𝑉 * ⊗𝒪P(Λ𝑙𝑉 )(−1) → 𝑉 ⊗𝒪P(Λ𝑙𝑉 ).

Fiberwise this morphism can be described as follows. Note that 𝒪P(Λ𝑙𝑉 )(−1)
is a tautological bundle on P(Λ𝑙𝑉 ) so its fiber over a point 𝑃 ∈ P(Λ𝑙𝑉 ) is
𝑃 ⊂ Λ𝑙𝑉 considered as 1-dimensional vector space. Now starting from a
vector 𝑣 ∈ 𝑃 ⊂ Λ𝑙𝑉 and 𝑓 ∈ Λ𝑙−1𝑉 * have Φ𝑃 (𝑓 ⊗ 𝑣) = 𝜕𝑓 (𝑣). It now
follows from the definitions that we have 𝒰 = Im Φ|Gr(𝑙,𝑉 ) since for any vector
𝑣 ∈ Λ𝑙𝑉 the support Supp(𝑣) ⊂ 𝑉 of this vector coincides with the image
contr(Λ𝑙−1𝑉 * ⊗ C𝑣).

We are now ready to formulate and prove the universal property of
Gr(𝑙, 𝑉 ).

Proposition 2.5. For 𝑆 ∈ Sch the set Map(𝑆,Gr(𝑙, 𝑉 )) identifies with the
set of pairs (𝜙, ℰ) consisting of a vector bundle ℰ of rank 𝑙 on 𝑆 and an
injection of vector bundles ℰ ˓˓→ 𝑉 ⊗𝒪𝑆.
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Proof. If 𝑓 : 𝑆 → 𝑋 is any morphism then we can set ℰ := 𝑓 *(𝒰) and
𝜙 := 𝑓 *(𝒰 ˓˓→ 𝑉 ⊗𝒪𝑋).

In the opposite direction starting from a pair (𝜙, ℰ) we can consider a
morphism

Λ𝑙𝜙 : Λ𝑙ℰ → Λ𝑙𝑉 ⊗𝒪𝑆.

It follows from the universal property of P(Λ𝑙𝑉 ) that there exists a morphism
𝑓 : 𝑆 → P(Λ𝑙𝑉 ) such that 𝑓 *(𝒪P(Λ𝑙𝑉 )(−1)) ≃ Λ𝑙ℰ . It is clear from the
definitions that the image of 𝑓 lies in Gr(𝑙, 𝑉 ) ⊂ P(Λ𝑙𝑉 ) so we obtain the
desired morphism 𝑓 : 𝑆 → Gr(𝑙, 𝑉 ).

We conclude that a morphism P1 → Gr(𝑙, 𝑉 ) is the same as the pair of
rank 𝑙 vector bundle ℰ on P1 and an embedding ℰ ˓˓→ 𝑉 ⊗ 𝒪P1 . Note that
the embedding of vector bundles ℰ ˓˓→ 𝑉 ⊗𝒪P1 is the same as the surjection
of vector bundles 𝑉 * ⊗ 𝒪P1 � ℰ*. Note also that the condition that 𝑓 has
degree 𝑑 precisely means that deg(ℰ*) = 𝑑, here deg(ℰ*) := deg Λ𝑡𝑜𝑝ℰ*.

Let us now define the functor ℳ𝑑 : Sch𝑜𝑝𝑝 → Set. Note that the set
ℳ𝑑(Spec(C)) =: ℳ𝑑(C) must parametrize morphisms 𝑓 : P1 → 𝑋 of degree
𝑑 or equivalently (by proposition 2.5) pairs (𝜋, ℰ) consisting of a vector bundle
ℰ on P1 of rank 𝑙 and a surjection 𝑉 ⊗𝒪P1 � ℰ of vector bundles such that
deg(ℰ) = 𝑑.

Recall that if ℱ is a coherent sheaf on a projective scheme 𝑋 with a
fixed embedding 𝜄 : 𝑋 →˓ P𝑚 then there exists a unique polynomial 𝑃ℱ(𝑡) of
degree 6 𝑚 such that 𝑃ℱ(𝑛) = dimC(Γ(𝑋,ℱ(𝑛))) for 𝑛 ∈ Z, 𝑛 ≫ 0. This
polynomial is called Hilbert polynomial of (𝑋, 𝜄).

Example 2.6. For 𝑋 = P1, ℱ a vector bundle of rank 𝑙 and degree 𝑑,
𝜄 = IdP1 we have 𝑃ℱ(𝑡) = 𝑡𝑙+ 𝑙+𝑑. Indeed by Birkhoff–Grothendieck theorem
every such ℱ is isomorphic to the direct sum 𝒪(𝑚1)⊕ . . .⊕𝒪(𝑚𝑙) for some
𝑚𝑖 ∈ Z so for 𝑚 ≫ 0 we have dimC Γ(P1,ℱ(𝑚)) = (𝑚1 + 𝑚 + 1) + . . . +
(𝑚𝑙 +𝑚+ 1) = 𝑙𝑚+ 𝑙 + 𝑑.

So we see that the condition that ℰ ∈ Vect(P1) has degree 𝑑 and rank 𝑙
can be compactly rewritten as 𝑃ℰ(𝑡) = 𝑡𝑙+𝑙+𝑑. Note also that this approach
allows us to associate rank and degree to any coherent sheaf ℰ ∈ Coh(P1).
Indeed if 𝑃ℰ(𝑡) = 𝑎𝑡 + 𝑏 then we set 𝑟(𝐸) := 𝑎 and 𝑑(ℰ) := 𝑏 − 𝑎 and call
them rank and degree respectively.

Definition 2.7. Pick a test scheme 𝑆 ∈ Sch then ℳ𝑑(𝑆) is the set of pairs
(ℰ , 𝜋), where ℰ is a locally free sheaf (vector bundle) on P1×𝑆 flat over 𝑆 such
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that 𝑃ℰ|P1×𝑠
(𝑡) = 𝑡𝑙+ 𝑙+𝑑 for any geometric point 𝑠 of 𝑆, 𝜋 : 𝑉 *⊗𝒪P1×𝑆 � ℰ

is the surjection of vector bundles .

Theorem 2.8. The functor ℳ𝑑 is represented by a smooth quasi-projective
scheme of dimension 𝑛𝑑+ (𝑛− 𝑙)𝑙 to be denoted by the same symbol.

To prove this theorem we define a smooth projective variety 𝒬𝑑 together
with an open embedding ℳ𝑑 →˓ 𝒬𝑑.

Definition 2.9. Pick a test scheme 𝑆 ∈ Sch then 𝒬𝑑(𝑆) is the set of pairs
(ℰ , 𝜋), where ℰ is a coherent sheaf on P1 × 𝑆 flat over 𝑆 and such that
𝑃ℰ|P1×𝑠

(𝑡) = 𝑡𝑙 + 𝑙 + 𝑑 for any geometric point 𝑠 of 𝑆, 𝜋 : 𝑉 * ⊗𝒪P1×𝑆 → ℰ is
the surjection of sheaves .

Note that we have the natural embedding of functors ℳ𝑑 →˓ 𝒬𝑑. Now
theorem 2.8 follows from the theorem bellow.

Theorem 2.10. Functor 𝒬𝑑 is represented by a smooth projective scheme of
dimension 𝑛𝑑+ (𝑛− 𝑙)𝑙 and the morphism ℳ𝑑 →˓ 𝒬𝑑 identifies ℳ𝑑 with an
open subscheme of 𝒬𝑑.

Proof. Follows from [Gr], see also [N].

Example 2.11. For 𝑙 = 1 (i.e. Gr(𝑙, 𝑉 ) = P𝑛−1) we have 𝒬𝑑 = P𝑛(𝑑+1)−1.
It can be easily seen at the level of C-points: a point of 𝒬𝑑(SpecC) consists
of a coherent sheaf ℰ ∈ Coh(P1) of degree 𝑑 and rank 1 and a surjection of
sheaves 𝜋 : 𝑉 * ⊗ 𝒪P1 → ℰ. Sheaf ℰ must be of the form 𝒪(𝑑) ⊕ ℱ , where
ℱ is the sum of finite number of skyscraper sheaves on P1. There are no
nonzero morphisms from 𝒪P1 to any skyscraper sheaf so we conclude that
ℱ = 0 (otherwise there are no surjection 𝑉 * ⊗𝒪P1 → ℰ) i.e. ℰ = 𝒪(𝑑). We
see that

Hom(𝑉 * ⊗𝒪P1 , ℰ) = Hom(𝑉 * ⊗𝒪P1 ,𝒪(𝑑)) ≃ 𝑉 ⊗ 𝑆𝑑(C2*)

and an element 𝑓 ∈ Hom(𝑉 * ⊗ 𝒪P1 , ℰ) defines a surjective morphism of
sheaves iff 𝑓 ̸= 0. We conclude that 𝒬𝑑 = P(𝑉 ⊗ 𝑆𝑑(C2*)) = P𝑛(𝑑+1)−1.

Note that by the universal property of 𝒬𝑑 applied to 𝑆 = 𝒬𝑑 and Id : 𝒬𝑑 →
𝒬𝑑 we obtain a universal exact sequence of sheaves on P1 ×𝒬𝑑:

0 → 𝒮𝑑 → 𝑉 * ⊗𝒪P1×𝒬𝑑
→ 𝒯𝑑 → 0.
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Sheaf 𝒮𝑑 is locally free (follows from the fact that 𝒯𝑑 is flat over 𝒬𝑑). So we
can consider the dual universal map

𝑢 : 𝑉 ⊗𝒪P1×𝒬𝑑
→ 𝒮*

𝑑 .

Now we can think about moduli space of morphisms P1 → Gr(𝑙, 𝑉 ) as
about a smooth algebraic variety ℳ𝑑 and we want to define algebraic varieties
Ω𝜆,𝑝(𝐹∙) ⊂ ℳ𝑑 which would parametrize morphisms 𝑓 : P1 → ℳ𝑑 such that
𝑓(𝑝) ∈ Ω𝜆(𝐹∙), here 𝜆 ∈ 𝑃 (𝑙 × 𝑘) and 𝑝 ∈ P1 is some point. To do so we
need to define an evaluation morphism ev : P1 ×ℳ𝑑 → Gr(𝑙, 𝑉 ).

Definition 2.12. For 𝑆 ∈ Sch define a map ev(𝑆) : (P1 × ℳ𝑑)(𝑆) →
Gr(𝑙, 𝑉 )(𝑆) as follows: note that a morphism 𝑓 : 𝑆 → P1 ×ℳ𝑑 defines us a
morphism 𝑆 → ℳ𝑑 (via the projection P1 ×ℳ𝑑 → ℳ𝑑) which is the same
as the pair (ℰ , 𝜋) as in definition 2.7. Consider now the natural embedding
𝜄𝑝 : 𝑝× 𝑆 →˓ P1 × 𝑆 and send 𝑓 to (𝜄*𝑝ℰ , 𝜄*𝑝𝜋) ∈ Gr(𝑙, 𝑉 )(𝑆).

Note that directly from the definitions ev is a morphism of functors so
it induces a morphism of the corresponding varieties to be denoted by the
same symbol.

Example 2.13. For 𝑙 = 1 we have Gr(𝑙, 𝑉 ) = P(𝑉 ) and recall that 𝒬𝑑 =
P(𝑉 ⊗𝑆𝑑C2*) and ℳ𝑑 ⊂ P(𝑉 ⊗𝑆𝑑C2*) is an open subset. Then the morphism
ev : P1×ℳ𝑑 → P(𝑉 ) is a restriction to P1×ℳ𝑑 of the birational morphism

P(C2) × P(𝑉 ⊗ 𝑆𝑑C2*) → P(𝑉 )

induced by the map C2 ⊗ (𝑉 ⊗ 𝑆𝑑C2*) → 𝑉, 𝑥⊗ 𝑣 ⊗ 𝑓 ↦→ 𝑓(𝑥)𝑣.

Definition 2.14. For 𝑝 ∈ P1, 𝜆 ∈ 𝑃 (𝑙×𝑘) and a flag 𝐹∙ we define Ω𝜆,𝑝(𝐹∙) as
the intersection ev−1(Ω𝜆(𝐹∙))∩(𝑝×ℳ𝑑). It can be considered as a subscheme
of ℳ𝑑 of codimension |𝜆|.

Example 2.15. Assume that 𝑙 = 1. Recall that for a fixed flag 𝐹∙ and
0 6 𝑎 6 𝑛 − 1 we have Ω𝑎(𝐹∙) = P(𝐹𝑛−𝑎) ⊂ P(𝑉 ). It follows from the
example 2.13 that for a point 𝑝 = [𝑥 : 𝑦] ∈ P1 we have Ω𝑎,𝑝(𝐹∙) = P(𝐹𝑛−𝑎) ∩
ℳ𝑑, where the intersection is taken in P(𝑉 ⊗𝑆𝑑C2*) and 𝐹𝑛−𝑎 is the preimage
of 𝐹𝑛−𝑎 under the linear map

𝑉 ⊗ 𝑆𝑑C2* → 𝑉, 𝑣 ⊗ 𝑓 ↦→ 𝑓(𝑥, 𝑦)𝑣.
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Let us now define compactifications Ω𝜆,𝑝(𝐹∙) of the varieties Ω𝜆,𝑝(𝐹∙) in
𝒬𝑑 (we will then define the desired numbers ⟨Ω𝜆1 , . . . ,Ω𝜆𝑁

⟩𝑑 as intersection
pairings of cohomology classes Ω𝜆,𝑝(𝐹∙) in the smooth variety 𝒬𝑑). For 𝑙 =
1 we will just have Ω𝑎,𝑝(𝐹∙) = P(𝐹𝑛−𝑎) ⊂ 𝒬𝑑 (see the example 2.15 for
notations).

As we already see in the case 𝑙 = 1 (see example 2.13) the morphism
ev : P1×ℳ𝑑 → Gr(𝑙, 𝑉 ) does not extend to a morphism P1×𝒬𝑑 → Gr(𝑙, 𝑉 )
so we can not define varieties Ω𝜆,𝑝(𝐹∙) ⊂ 𝒬𝑑 directly in the same way as
we have defined varieties Ω𝜆,𝑝(𝐹∙) ⊂ ℳ𝑑 in definition 2.14. We will use a
universal morphism 𝑢 : 𝑉 ⊗𝒪P1×𝒬𝑑

→ 𝒮*
𝑑 to define them.

Definition 2.16. For each 𝑖 = 1, . . . , 𝑙, let 𝐷𝑖,𝜆𝑖
(𝐹∙) ⊂ P1×𝒬𝑑 be the largest

subscheme on which the dimension of the kernel of 𝑢 : 𝐹𝑛−𝑙−𝑖+𝜆𝑖
⊗𝒪P1×𝒬𝑑

→
𝒮*
𝑑 is at least 𝑖, and let 𝐷𝑖,𝜆𝑖,𝑝(𝐹∙) be the intersection 𝐷𝑖,𝜆𝑖,𝑝(𝐹∙) ∩ (𝑝 ×𝒬𝑑)

considered as a subscheme of 𝒬𝑑. Then we define

Ω𝜆,𝑝(𝐹∙) := 𝐷1,𝜆1,𝑝(𝐹∙) ∩ . . . ∩𝐷𝑙,𝜆𝑙,𝑝(𝐹∙).

This is a subscheme of 𝒬𝑑 of codimension |𝜆|.

It is clear from the definitions that Ω𝜆,𝑝(𝐹∙) ∩ℳ𝑑 = Ω𝜆,𝑝(𝐹∙).

Example 2.17. It follows from example 2.15 and the definitions that for
𝑙 = 1 and 0 6 𝑎 6 𝑛− 1 we have Ω𝑎,𝑝(𝐹∙) = P(𝐹𝑛−𝑎). Note also that

dim Ω𝑎,𝑝(𝐹∙) = dim(𝐹𝑛−𝑎) − 1 = 𝑛𝑑+ dim(𝐹𝑛−𝑎) = 𝑛𝑑+ 𝑛− 𝑎− 1

since the map
𝑉 ⊗ 𝑆𝑑C2* → 𝑉, 𝑣 ⊗ 𝑓 ↦→ 𝑓(𝑥, 𝑦)𝑣

is clearly surjective. We conclude that the codimension of Ω𝑎,𝑝(𝐹∙) in 𝒬𝑑

indeed equals to 𝑎.

Let us denote by 𝜎𝜆 ∈ 𝐻 |𝜆|(𝒬𝑑,Z) the cohomology class of Ω𝜆,𝑝(𝐹∙). We
are now ready to define Gromov-Witten numbers ⟨Ω𝜆1 , . . . ,Ω𝜆𝑁

⟩𝑑.

Definition 2.18. For 𝜆1, . . . , 𝜆𝑁 ∈ 𝑃 (𝑙 × 𝑘) let ⟨Ω𝜆1 , . . . ,Ω𝜆𝑁
⟩𝑑 be zero if

|𝜆1| + |𝜆2| + . . . + |𝜆𝑙| ̸= dimℳ𝑑 = 𝑛𝑑 + (𝑛 − 𝑙)𝑙. Otherwise we define
⟨Ω𝜆1 , . . . ,Ω𝜆𝑁

⟩𝑑 as the intersection pairing of the cohomology classes 𝜎𝜆𝑖
∈

𝐻*(𝒬𝑑,C).
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Example 2.19. Assume 𝑙 = 1 then 𝜆1, . . . , 𝜆𝑁 are just some numbers 𝑎1, . . . , 𝑎𝑁
such that 0 6 𝑎𝑖 6 𝑛− 1. Let us now compute the numbers ⟨Ω𝑎1 , . . . ,Ω𝑎𝑁 ⟩𝑑.
We assume that 𝑎1 + . . .+ 𝑎𝑁 = 𝑛(𝑑+ 1) − 1 (otherwise this number is zero
by the definition). It follows from example 2.11 that 𝒬𝑑 = P(𝑉 ⊗ 𝑆𝑑C2*) =
P𝑛(𝑑+1)−1 so we have an isomorphism 𝐻*(𝒬𝑑,Z) ≃ Z[𝑡]/𝑡𝑛(𝑑+1) and by exam-
ple 2.17 we have Ω𝑝,𝑎(𝐹∙) = P(𝐹𝑛−𝑎𝑖) for certain subspace 𝐹𝑛−𝑎𝑖 ⊂ 𝑉 ⊗𝑆𝑑C2*

of codimension 𝑎𝑖 so we have 𝜎𝑎𝑖 = 𝑡𝑎𝑖. We conclude that ⟨Ω𝑎1 , . . . ,Ω𝑎𝑁 ⟩𝑑 =
1.

2.1 Small quantum cohomology ring

We can now define the small quantum cohomology ring 𝑄𝐻*(Gr(𝑙, 𝑉 ),Z) :=
𝐻*(Gr(𝑙, 𝑉 ),Z)⊗ZZ[𝑞] and set �̃�𝜆 := 𝜎𝜆⊗1. The ring structure on𝑄𝐻*(Gr(𝑙, 𝑉 ),Z)
is defined by

�̃�𝜆 · �̃�𝜇 :=
∑︁
𝜈, 𝑑>0

⟨Ω𝜆,Ω𝜇,Ω𝜈𝑡⟩𝑑𝑞𝑑�̃�𝜈 .

It is a nontrivial fact that · defines an associative ring structure.

Example 2.20. Consider the case 𝑙 = 1. In this case 𝜆, 𝜇, 𝜈 are just numbers
0 6 𝑎, 𝑏, 𝑐 6 𝑛−1 and it follows from example 2.19 that ⟨Ω𝑎,Ω𝑏,Ω𝑛−1−𝑐⟩𝑑 = 0
if 𝑎+𝑏+𝑛−𝑐 ̸= 𝑛(𝑑+1) and is 1 otherwise. We conculde that 𝑄𝐻*(Gr(𝑙, 𝑉 ),Z)
is isomorphic to Z[𝑡, 𝑞]/(𝑡𝑛 − 𝑞) via the map 𝜎𝑎 ↦→ 𝑡𝑎. Note that for 𝑞 = 0 we
obtain the cohomology ring of P𝑛−1.

In the example bellow we have explicitly described the ring𝑄𝐻*(Gr(𝑙, 𝑉 ),Z)
for 𝑙 = 1. The goal of the next sections is to generalize this result to the case
of arbitrary 𝑙.

3 Main tools
We start from the following definition.

Definition 3.1. If 𝐴 is a subset of Gr(𝑙, 𝑉 ) then we define Span𝐴 to be the
sum

∑︀
𝑊∈𝐴𝑊 . We also define ker𝐴 as the intersection

⋂︀
𝑊∈𝐴𝑊 .

Example 3.2. For 𝐴 = {𝑊} ∈ Gr(𝑙, 𝑉 ) we have Span𝐴 = ker𝐴 = 𝑊 ⊂ 𝑉 .
For 𝐴 = Gr(𝑙, 𝑉 ) we have Span𝐴 = 𝑉, ker𝐴 = 0.
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Remark 3.3. Note that for a fixed subspace 𝐹 ⊂ 𝑉 and a subvariety 𝐴 ⊂
Gr(𝑙, 𝑉 ) we have Span𝐴 ⊂ 𝐹 (resp. 𝐹 ⊂ ker𝐴) iff 𝐴 ⊂ Gr(𝑙,𝐾) (resp. 𝐴 ⊂
Gr(𝑙 − dim𝐾,𝑉/𝐾) ⊂ Gr(𝑙, 𝑉 )). Note also that if 𝑖 : Gr(𝑙, 𝑉 ) ∼−→ Gr(𝑛 −
𝑙, 𝑉 *), 𝑊 ↦→ Ann𝑊 is the natural identification. Then

Span 𝑖(𝐴) = Ann(ker𝐴), ker𝐴 = Ann(Span𝐴).

Lemma 3.4. Let 𝐶 be a rational curve of degree 𝑑 in 𝑋. Then Span𝐶 has
dimension at most 𝑙 + 𝑑 and ker𝐶 has dimension at least 𝑙 − 𝑑.

Proof. Curve 𝐶 is an image of a regular function 𝑓 : P1 → 𝑋 of degree
𝑑. By proposition 2.5 this map corresponds to ℰ = 𝑓 *(𝒰) ⊂ 𝑉 ⊗ 𝒪P1 ,
𝜙 := 𝑓 *(𝒰 ˓˓→ 𝑉 ⊗ 𝒪P1). Point 𝑝 ∈ P1 goes to ℰ𝑝 ⊂ 𝑉 ∈ 𝑋. Condition
that deg 𝑓 = 𝑑 corresponds to deg ℰ = −𝑑. Therefore ℰ = ⊕𝑙

𝑖=1𝒪P1(−𝑎𝑖),
where 𝑎𝑖 > 0,

∑︀𝑙
𝑖=1 𝑎𝑖 = 𝑑. Each map 𝑉 * ⊗ 𝒪P1 → 𝒪P1(𝑎) is defined by

map on global sections 𝜑 : 𝑉 * → Γ(𝒪P1(𝑎)). Taking duals we see that map
𝒪P1(−𝑎) → 𝑉 ⊗𝒪P1 is given by map 𝜑* : Γ(𝒪P1(𝑎))* → 𝑉 . Hence map from
ℰ to 𝑉 ⊗ 𝒪P1 is given by 𝜑*

1, . . . , 𝜑
*
𝑙 . It is easy to see that for any 𝑝 ∈ P1

its image is 𝐿 = Span(𝑣1, . . . , 𝑣𝑙) where 𝑣𝑖 ∈ Im𝜑*
𝑖 . Therefore span of 𝐶 is

contained in ∪ Im𝜑*
𝑖 , so it has dimension at most∑︁

dim𝜑*
𝑖 6

∑︁
dim Γ(𝒪P1(𝑎𝑖)) =

∑︁
(1 + 𝑎𝑖) = 𝑙 + 𝑑

On the other hand at least 𝑙− 𝑑 of 𝑎𝑖 equal to 0. In this case 𝑎𝑖 = 0 we have
Im𝜑*

𝑖 = 1. So any 𝐿 contains Im𝜑*
𝑖 for this 𝑖. We deduce that kernel of 𝐶

has dimension at least 𝑙 − 𝑑.

If 𝜆 is a partition and 𝑑 is a nonnegative integer we define �̂� to be the par-
tition obtained by removing the leftmost 𝑑 columns from the Young diagram
of 𝑑, i.e. 𝜆𝑖 = max(𝜆𝑖 − 𝑑, 0).

Lemma 3.5. Let 𝐶 ⊂ 𝑋 be a rational curve of degree 𝑑 6 𝑘 and let 𝐸 ⊂ 𝑉
be an 𝑙+𝑑 dimensional subspace containing the span of 𝐶. If 𝜆 is a partition
such that 𝐶 ∩ Ω𝜆(𝐹∙) ̸= ∅ then 𝑊 belongs to the Schubert variety Ω�̂�(𝐹∙) in
Gr(𝑙 + 𝑑, 𝑉 ).

Proof. Recall that the Schubert variety Ω𝜆(𝐹∙) is defined as

{𝑊 ∈ 𝑋 | dim(𝑊 ∩ 𝐹𝑘+𝑖−𝜆𝑖
) > 𝑖 ∀ 1 6 𝑖 6 𝑙}.
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Let 𝑊 ∈ 𝐶 ∩ Ω𝜆(𝐹∙). By definition 𝑊 ⊂ 𝐸. Hence dim(𝐸 ∩ 𝐹𝑘+𝑖−𝜆𝑖
) >

dim(𝑊 ∩ 𝐹𝑘+𝑖−𝜆𝑖
) > 𝑖 for all 1 6 𝑖 6 𝑙. On the other hand 𝐹𝑘−𝑑+𝑖−�̂�𝑖

=
𝐹min(𝑘+𝑖−𝜆𝑖,𝑘−𝑑+𝑖). Intersection of 𝑙+𝑑 dimensional subspace 𝐸 with 𝑘−𝑑+ 𝑖
dimensional subspace 𝐹𝑘−𝑑+𝑖 has dimension at least 𝑖. Therefore dim(𝐸 ∩
𝐹𝑘−𝑑+𝑖−�̂�𝑖

) > 𝑖. We deduce that 𝐸 belongs to Ω�̂�(𝐹∙).

Corollary 3.6. If Ω�̂� ∩ Ω�̂� ∩ Ω𝜈 = ∅ then ⟨Ω𝜆,Ω𝜇,Ω𝜈⟩𝑑 = 0.

This corollary allows us to deduce statements about the quantum coho-
mology from statements about the usual cohomology.

Recall that for a partition 𝜆 we denote by ℓ(𝜆) the number of nonzero
rows of 𝜆. The following lemma is very useful.

Lemma 3.7. Let 𝜆 and 𝜇 be partitions contained in 𝑙×𝑘 rectangle such that
𝑙(𝜆) + 𝑙(𝜇) 6 𝑙. Then

�̃�𝜆 · �̃�𝜇 = (𝜎𝜆 · 𝜎𝜇) ⊗ 1

Proof. Suppose that 𝑑 > 1 and 𝜈 is a partition such that |𝜆| + |𝜇| + |𝜈| =
𝑙𝑘 + 𝑛𝑑. Then we have

|�̂�|+|�̂�|+|𝜈| > |𝜆|+|𝜇|+|𝜈|−2𝑙𝑑 = 𝑙𝑘+𝑛𝑑−2𝑙𝑑 = 𝑙𝑘+𝑘𝑑−𝑙𝑑 > (𝑙+𝑑)(𝑘−𝑑)

It follows that for general flags 𝐹∙, 𝐺∙, 𝐻∙ we have Ω�̂�(𝐹∙) ∩ Ω�̂�(𝐺∙) ∩
Ω𝜈(𝐻∙) = ∅. Using Corollary 3.6 we get ⟨Ω𝜆,Ω𝜇,Ω𝜈⟩𝑑 = 0. The lemma
follows.

4 Quantum Pieri and Giambelli formulas
Using the results of section 3 we are ready to formulate and prove quantum
versions of Pieri and Giambelli formulas.

4.1 Quantum Pieri

We start from the following lemma. Recall that the number ⟨Ω𝛼,Ω𝛽,Ω𝑖⟩𝑑 is
nonzero only if |𝛼| + |𝛽| + 𝑝 = 𝑙(𝑛− 𝑙) + 𝑑𝑛.

Lemma 4.1. For 𝑑 > 1 let 𝛼, 𝛽 ∈ 𝑃 (𝑙 × 𝑘), 1 6 𝑝 6 𝑛 − 𝑙 be such that
|𝛼| + |𝛽| + 𝑝 = 𝑙(𝑛− 𝑙) + 𝑑𝑛. Then we have

⟨Ω𝛼,Ω𝛽,Ω𝑝⟩𝑑 =

{︃
⟨Ω�̂�,Ω𝛽,Ω𝑝⟩0 for 𝑑 = 1 and ℓ(𝛼) = ℓ(𝛽) = 𝑙,

0 otherwise .
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Proof. Let 𝐶 be a rational curve of degree 𝑑 in Gr(𝑙, 𝑉 ) which intersects with
each of the varieties Ω𝛼(𝐹∙), Ω𝛽(𝐺∙), Ω𝑝(𝐻∙) for generic flags 𝐹∙, 𝐺∙, 𝐻∙. It
follows from lemma 3.4 that there exists 𝐸 ⊂ 𝑉 of dimension 𝑙+ 𝑑 such that
Span𝐶 ⊂ 𝐸. By lemma 3.5 we must have 𝐸 ∈ Ω�̂�(𝐹∙)∩Ω𝛽(𝐺∙)∩Ω𝑝(𝐻∙) and
in particular Ω�̂�(𝐹∙) ∩ Ω𝛽(𝐺∙) ∩ Ω𝑝(𝐻∙) ̸= ∅. Recall that the codimensions
of Ω�̂�(𝐹∙),Ω𝛽(𝐺∙),Ω𝑝(𝐻∙) ⊂ Gr(𝑙 + 𝑑, 𝑉 ) are |�̂�|, |𝛽|, |𝑝| respectively and
dim Gr(𝑙 + 𝑑,𝐸) = (𝑙 + 𝑑)(𝑛− 𝑙 − 𝑑). We conclude that

|�̂�| + |𝛽| + 𝑝 6 (𝑙 + 𝑑)(𝑛− 𝑙 − 𝑑). (1)

Note also that 𝛼, 𝛽 lie in an 𝑙×(𝑛−𝑙) rectangle so directly from the definitions
we have |�̂�| > |𝛼|− 𝑙𝑑, |𝛽| > |𝛽|− 𝑙𝑑. We also have 𝑝 = max(𝑝−𝑑, 0) > 𝑝−𝑑.
Altogether we obtain

|�̂�| + |𝛽| + 𝑝 > |𝛼| + |𝛽| − 2𝑙𝑑+ 𝑝− 𝑑 = (𝑙 + 𝑑)(𝑛− 𝑙 − 𝑑) + 𝑑2 − 𝑑. (2)

We conclude from (1) and (2) that 0 > 𝑑2−𝑑, hence, we must have 𝑑 = 1 and
moreover ℓ(𝛼) = ℓ(𝛽) = 𝑙, |�̂�|+ |𝛽|+𝑝 = (𝑙+1)(𝑛− 𝑙−1). So we have shown
that ⟨Ω𝛼,Ω𝛽,Ω𝑖⟩𝑑 = 0 for 𝑑 > 1 or if ℓ(𝛼) ̸= 𝑙 or ℓ(𝛽) ̸= 𝑙. Assume that 𝑑 = 1

and note that ⟨Ω�̂�,Ω𝛽,Ω𝑝⟩0 is nonzero only if |�̂�|+ |𝛽|+𝑝 = (𝑙+𝑑)(𝑛− 𝑙−𝑑).
We now conclude from (2) that ⟨Ω�̂�,Ω𝛽,Ω𝑝⟩0 = 0 if ℓ(𝛼) ̸= 𝑙 or ℓ(𝛽) ̸= 0.

Let us now assume that 𝑑 = 1 and ℓ(𝛼) = ℓ(𝛽) = 𝑙, hence, �̂�𝑖 = 𝛼𝑖 −
1, 𝛽𝑖 = 𝛽𝑖 − 1 for all 𝑖 = 1, 2, . . . , 𝑙. Recall that our goal is to show that
⟨Ω𝛼,Ω𝛽,Ω𝑝⟩1 = ⟨Ω�̂�,Ω𝛽,Ω𝑝⟩0. Recall that by proposition 1.4 we have either
⟨Ω�̂�,Ω𝛽,Ω�̂�⟩0 = 0 or ⟨Ω�̂�,Ω𝛽,Ω�̂�⟩0 = 1.

Case 1: If ⟨Ω�̂�,Ω𝛽,Ω𝑝⟩0 = 0 then we must have ⟨Ω𝛼,Ω𝛽,Ω𝑖⟩1 = 0 since
otherwise there exists a curve 𝐶 of degree 1 in Gr(𝑙, 𝑉 ) which intersects with
each of the varieties Ω𝛼(𝐹∙), Ω𝛽(𝐺∙), Ω𝑖(𝐻∙) for generic flags 𝐹∙, 𝐺∙, 𝐻∙. It
then follows from lemma 3.5 that Span𝐶 ⊂ Ω�̂�∩Ω𝛽∩Ω�̂� and this contradicts
to the fact that ⟨Ω�̂�,Ω𝛽,Ω�̂�⟩0 = 0.

Case 2: If ⟨Ω�̂�,Ω𝛽,Ω�̂�⟩0 = 1 then there exists a unique 𝑊 ⊂ 𝑉 of di-
mension 𝑙 + 1 such that 𝑊 ∈ Ω�̂�(𝐹∙) ∩ Ω𝛽(𝐺∙) ∩ Ω�̂�(𝐻∙). If 𝐶 is a ratio-
nal curve of degree 1 in Gr(𝑙, 𝑉 ) wich intersects with each of the varieties
Ω𝛼(𝐹∙), Ω𝛽(𝐺∙), Ω𝑖(𝐻∙) then by lemma 3.5 we must have Span𝐶 = 𝑊 so

𝐶 ⊂ Gr(𝑙,𝑊 ) ⊂ Gr(𝑙, 𝑉 ). (3)

Recall now that 𝑊 ∈ Ω�̂�(𝐹∙) ∩ Ω𝛽(𝐺∙) ∩ Ω�̂�(𝐻∙) and flags 𝐹∙, 𝐺∙, 𝐻∙ are
generic so 𝑊 must lie in the interiors of Schubert varieties above i.e.

dim(𝑊 ∩ 𝐹𝑛−𝑙−1+𝑖−�̂�𝑖
) = dim(𝑊 ∩𝐺𝑛−𝑙−1+𝑖−𝛽𝑖

) = 𝑖.
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Recall that �̂�𝑖 = 𝛼𝑖 − 1, 𝛽𝑖 = 𝛽𝑖 − 1 so we conclude that

dim(𝑊 ∩ 𝐹𝑘+𝑖−𝛼𝑖
) = dim(𝑊 ∩ 𝐹𝑘+𝑖−𝛽𝑖

) = 𝑖 ∀ 𝑖 = 1, 2, . . . , 𝑙. (4)

In particular we obtain dim(𝑊 ∩ 𝐹𝑛−𝛼𝑙
) = dim(𝑊 ∩ 𝐺𝑛−𝛽𝑙

) = 𝑙. Set
𝑉1 := 𝑊 ∩𝐹𝑛−𝛼𝑙

, 𝑉2 := 𝑊 ∩𝐺𝑛−𝛽𝑙
. It follows from (4) that 𝑉1 ∈ Ω𝛼(𝐹∙), 𝑉2 ∈

Ω𝛽(𝐺∙). Note also that codimensions of Ω𝛼(𝐹∙), Ω𝛽(𝐺∙) in Gr(𝑙, 𝑉 ) are
|𝛼|, |𝛽| respectively and |𝛼| + |𝛽| = dim Gr(𝑙, 𝑉 ) + 𝑛 − 𝑝 > dim Gr(𝑙, 𝑉 )
so we must have Ω𝛼 ∩ Ω𝛽 = ∅ for generic 𝐹∙, 𝐺∙. It follows that 𝑉1 ̸= 𝑉2
so dim(𝑉1 ∩ 𝑉2) 6 𝑙 − 1. Recall also that 𝑉1, 𝑉2 ⊂ 𝑊 and dim𝑊 = 𝑙 + 1
so we must have dim(𝑉1 ∩ 𝑉2) > 𝑙 − 1. We conclude that 𝑆 := 𝑉1 ∩ 𝑉2 has
dimension 𝑙 − 1.

Let us return now to our 𝐶. Pick 𝑉 ′
1 ∈ 𝐶 ∩ Ω𝛼(𝐹∙), 𝑉

′
2 ∈ 𝐶 ∩ Ω𝛽(𝐺∙).

By the definitions we have 𝑉 ′
1 , 𝑉

′
2 ⊂ Span𝐶 = 𝑊 . On the other hand by the

definitions 𝑉1 ⊂ 𝐹𝑛−𝛼𝑙
, 𝑉 ′

2 ⊂ 𝐺𝑛−𝛽𝑙
. We conclude that 𝑉 ′

1 ⊂ 𝑊 ∩𝐹𝑛−𝛼𝑙
, 𝑉 ′

2 ⊂
𝑊 ∩ 𝐺𝑛−𝛽𝑙

so we must have 𝑉 ′
1 = 𝑉1, 𝑉2 = 𝑉 ′

2 because of the dimension
estimates. It follows that 𝑆 ⊂ ker𝐶 but both these varieties have dimension
𝑙 − 1 so we conclude that 𝑆 = ker𝐶. It now follows from the equalities
𝑆 = ker𝐶, 𝑊 = Span𝐶 that 𝐶 ⊂ P(𝑊/𝑆), hence, 𝐶 = P(𝑊/𝑆) since 𝐶
is projective of dimension 1 and P(𝑊/𝑆) ≃ P1. So we have shown that
⟨Ω𝛼,Ω𝛽,Ω𝑝⟩1 6 1. To show that ⟨Ω𝛼,Ω𝛽,Ω𝑝⟩1 = 1 It remains to check
that P(𝑊/𝑆) ⊂ Gr(𝑙, 𝑉 ) intersects with Ω𝛼(𝐹∙),Ω𝛽(𝐺∙),Ω𝑝(𝐻∙). Note that
𝑉1 ∈ P(𝑊/𝑆) ∩ Ω𝛼(𝐹∙), 𝑉2 ∈ P(𝑊/𝑆) ∩ Ω𝛽(𝐺∙). Let us denote by 𝑉3 ⊂ 𝑊
any subspace of dimension 𝑙 which contains 𝑆 and 𝑊 ∩ 𝐻𝑛−𝑙−𝑝+1. By the
definition 𝑆 ⊂ 𝑉3 ⊂ 𝑊 so 𝑉3 ∈ P(𝑊/𝑆). Note also that 𝑉3 ∈ Ω𝑝(𝐻∙) since
𝑉3 ∩𝐻𝑛−𝑙+1−𝑝 ⊃ 𝑊 ∩𝐻𝑛−𝑙+1−𝑝 and the latter has dimension 1. We conclude
that 𝑉3 ∈ P(𝑊/𝑆) ∩ Ω𝑝(𝐻∙) and the claim follows.

Theorem 4.2. Pick 𝜆 ∈ 𝑃 (𝑙 × 𝑘) and 0 6 𝑝 6 𝑛− 𝑙. Then we have

𝜎𝑝 · 𝜎𝜆 =
∑︁

𝜇,|𝜇|=|𝜆|+𝑝
𝑛−𝑙>𝜇𝑖>𝜆𝑖>𝜇𝑖+1

𝜎𝜇 + 𝑞
∑︁

𝜈,|𝜈|=|𝜆|+𝑝−𝑛
𝜆𝑖−1>𝜈𝑖>𝜆𝑖+1−1>0

𝜎𝜈 . (5)

Proof. Directly follows from the classical Pieri formula (see proposition 1.4)
and lemma 4.1.

Remark 4.3. Note that the first sum in (5) is taken over all 𝜇 that can be
obtained from 𝜆 by adding 𝑝 boxes with no two in the same column and the
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second sum is zero if ℓ(𝜆) < 𝑙 and otherwise is taken over all 𝜈 such that 𝜈
that can be obtained from (𝜆1− 1, . . . , 𝜆𝑙− 1) by adding 𝑙+ 𝑝−𝑛 boxes with
no two in the same column.

4.2 Quantum Giambelli

We can now prove the quantum version of the Giambelli theorem.

Theorem 4.4 ([Be]). If 𝜆 is a partition contained in 𝑙 × 𝑘 rectangle then
the Schubert class �̃�𝜆 in 𝑄𝐻* Gr(𝑙, 𝑉 ) is given by �̃�𝜆 = det(�̃�𝜆𝑖+𝑗−𝑖), where
�̃�𝑖 = 0 for 𝑖 < 0 or 𝑖 > 𝑘.

Proof. Let us prove that if 0 6 𝑖𝑗 6 𝑘 for 1 6 𝑗 6 𝑙 then �̃�𝑖1 · �̃�𝑖2 · · · · �̃�𝑖𝑙 =
(𝜎𝑖1 ·𝜎𝑖2 ·. . .·𝜎𝑖𝑙)⊗1, i.e. no 𝑞-terms show up when the first product is expanded
in the quantum ring. Using theorem 4.2 we easily prove by induction on 𝑗
that the expansion of �̃�𝑖1 · �̃�𝑖2 · . . . · �̃�𝑖𝑗 involves no 𝑞-terms and no partitions
of length greater than 𝑗.

Another proof of this uses lemma 3.7 and the fact that expansion of
𝜎𝜆 · 𝜎𝜇 contains no terms of length greater than 𝑙(𝜆) + 𝑙(𝜇). This fact follows
from Littlewood-Richardson rule. Here we need this fact only for 𝜇 = (𝑝) =
(𝑝, 0, 0, . . . , 0), so it follows from the usual Pieri rule.

Since det(�̃�𝜆𝑖+𝑗−𝑖) =
∑︀

𝜋∈𝑆𝑛
(−1)sgn(𝜋)

∏︀𝑛
𝑖=1 �̃�𝜆𝑖+𝜋(𝑖)−𝑖 we deduce that

det(�̃�𝜆𝑖+𝑗−𝑖) = det(𝜎𝜆𝑖+𝑗−𝑖) ⊗ 1 = 𝜎𝜆 ⊗ 1 = �̃�𝜆

.

5 Presentation via generators and relations
Let 𝐴 := 𝑄𝐻*(𝑋,Z). We define 𝑐𝑖 ∈ 𝐴 as 𝑐𝑖 = �̃�1𝑖 . For 𝑝 > 1 we define
�̃�𝑝 = det(𝑐1+𝑗−𝑖)1≤𝑖,𝑗≤𝑝. For 𝑝 < 𝑛 using Lemma 3.7 or Theorem 4.2 we have
�̃�𝑝 = 𝜎𝑝⊗1. Hence this definition agrees with previous definition of �̃�𝑝. Using
this definition of �̃�𝑝 and first row decomposition of determinant we get

𝑙∑︁
𝑖=1

(−1)𝑖�̃�𝑚−𝑖𝑐𝑖 = 0 (6)

Lemma 5.1. We have �̃�𝑛 = (−1)𝑙−1𝑞.

16



Proof. Using quantum Pieri and (6) we get

�̃�𝑛 = (−1)𝑙−1�̃�𝑘�̃�1𝑙 = (−1)𝑙−1𝑞.

Proposition 5.2. We have an isomorphism of Z-algebras

𝐻*(Gr(𝑙, 𝑉 ),Z) ∼= Z[𝑥1, . . . , 𝑥𝑙, 𝑞]/(𝑦𝑘+1, . . . , 𝑦𝑛−1, 𝑦𝑛 + (−1)𝑙𝑞)

given by 𝑐𝑖 ↦→ 𝑥𝑖, here 𝑦𝑝 := det(𝑥1+𝑗−𝑖)1≤𝑖,𝑗≤𝑝.

Proof. Let

𝐵 := Z[𝑥1, . . . , 𝑥𝑙, 𝑞]/(𝑦𝑘+1, . . . , 𝑦𝑛−1, 𝑦𝑛 + (−1)𝑙𝑞)

where 𝜎𝑝 = det(𝑐1+𝑗−𝑖)1≤𝑖,𝑗≤𝑝. Using lemma 5.1 we get well-defined map
𝜑 : 𝐵 → 𝐴, 𝜑(𝑥𝑖) = 𝑐𝑖. Ring 𝐴 is a free Z[𝑞]-module. A standard algebraic
lemma says that a map 𝜓 : 𝑀 → 𝑁 of Z[𝑞]-modules with 𝑁 free is an isomor-
phism if and only if induced map 𝜓′ : 𝑀/𝑞𝑀 → 𝑁/𝑞𝑁 is an isomorphism.
Hence it is enough to prove that 𝜑′ : 𝐵/𝑞𝐵 → 𝐴/𝑞𝐴 is an isomorphism. We
have 𝐵/𝑞𝐵 = Z[𝑥1, . . . , 𝑥𝑙]/(𝑦𝑘+1, . . . , 𝑦𝑛), 𝐴/𝑞𝐴 = 𝐻*(𝑋,Z), 𝜑′(𝑥𝑖) = 𝑐𝑖.
Using presentation of 𝐻*(𝑋) via generators and relations (theorem 1.8) we
deduce that 𝜑′ is an isomorphism.
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