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Abstract

We recall definition of (small) quantum cohomology of Grassmanni-
ans following |Be|, give technical details and then give elementary proofs
of the main theorems about the quantum cohomology of Grassmannians
following Buch’s paper (|Bu]). Namely, we prove quantum Giambelli
and quantum Pieri formulas and the presentation of quantum cohomol-

ogy ring.

1 Recollections on cohomologies of Grassman-
ninans

1.1 Main definitions

Let us fix some notations. Pick I,n € Z>o, [ < n and let V be a vector
space of dimension n over complex numbers. We denote by Gr(l,V) the
Grassmanian parametrizing [-dimensional subspaces W C V. We denote
by ¢: Gr(l,V) < P(AY(V)) the Pliikker embedding which sends W C V to
A (W) € P(AY(V)). One can show that Gr(l,V) is a complex projective
algebraic variety of dimension [k, here k :=n — [.

Note that we have the natural left action GL(V) ~ Gr(l,V): element
g € GL(V) sends W € Gr(l,V) to g(W) € Gr(l,V). Tt is clear that this
action is transitive. Let us fix any point U € Gr(l,V) and denote by
P C GL(V) the stabilizer of U. Then we have the natural identification
G/P—> Gr(l,V), g — g(U) which we will use later to define the tautologi-
cal bundle on Gr(l, V).



Let us denote by P(l x k) the set of [-tuples of integers (A1, A, ..., A)
such that k > A\ > ... > A\ > 0. Note that P(l x k) is nothing else but the
set of partitions which lie in the rectangle [ x k. For a flag Fy, and A\ € P(Ix k)
we define the Schubert cell Q5(F,) C Gr(l,V) as follows:

Qi(F.) = {W € Gl"(l, V) | dlm(W N Fk—i—i—)\i) =iVi=1,... ,l}

Schubert cell Q3 (F,) has codimension |A| in Gr(l,V'), and is isomorphic to
A=A We have a disjoint decomposition

Gr(,V)= || (&)
)

AeP(Ixk

To each A € P(l x k) we can also associate a Schubert variety which can
be defined as follows:

Q/\(F.) = {W S Gr(l, V) | dlm(W N sz—i-&-)\i) >ivVi=1,... ,l}

Varieties Q) (F,) are closed subvarieties of Gr(l,V') of codimension |\|, we
can also describe Q) (F,) as the Zariski closure of Q25(F3).

Example 1.1. For | = 1 we have Gr(l,V) = P*! and Schubert varieties
are parametrized by numbers 0 < a < n — 1. Schubert variety corresponding
to0<a<n—1anda flag Fy is precisely P(F,_,) C P(V).

For A € P(l x k) we denote by o, € H?*(Gr(l,V),Z) the cohomology
class of Q,(F,) (note that it does not depend on F, since for any two flags
F,, F, there exists g € GL(V') such that g(F,) = F. so g(Q\(F,)) = QU (F))
and now it remains to note that GL(V') is connected). For A, Ao, ..., Ay €
P(l x k) we denote by (2),,...,,) € Z the intersection pairing of these
subvarieties of Gr(l, V') (which is by the definition zero if |\ + ...+ [An| #
dim Gr(l, V) = k).

For a partition A € P(l x k) we denote by A° the following partition:
A= (k—=X,k—X_1,...,k— ). The following proposition is standard.

Proposition 1.2. For A\, u € P(l x k) we have

1if A=pc
2,0, =
(2 M> {0 otherwise .



Corollary 1.3. For any A1, \a, ..., An € P(l X k) we have

O')\l L O-)\N — Z<Q,LL079)\17 see 7QAN>O-M'

o
Proof. We can write oy, - ... oxy = >, ¢,0, for some ¢, € Z. It follows
from proposition 1.2 that oue - oy, - ... 0ry = cu0ue - 0,. It again follows

from proposition 1.2 and definitions that
O'uc cON " 0Ny = <QHC7Q)‘17 RN ,Q,\N>ch . O-;U'

and the claim follows. O]

1.2 Pieri and Giambelli formulas

To 1 > p > k we can associate a partition (p,0,0,...,0) € P(l x k) and
denote by (2, the corresponding Schubert variety.

1.2.1 Pieri formula

Proposition 1.4. We have 0, - 0, = 305, where the sum is taken over
all B that can be obtained by adding i boxes to a with no two in the same
column.

Remark 1.5. Note that the Pieri formula is equivalent to the following state-
ment about intersection pairing of Schubert varieties. If o, 5 € P(I x k), 0 <
p < k are such that || + || + p = dim Gr(l, V) = [(n — ) then

1 if ozi—l—ﬁl_i}n—l and ai+ﬁl+1_i<n—l

0, otherwise.

<Qav 967 Qp> = {

Indeed recall that
0p 00 = (Qa, Qse, Q)os.
B

Note now that [ can be obtained by adding p boxes to o with no two in
the same column iff 5; > «; for every ¢« = 1,2,...,] and «; > [;41 for
i=1,2,...,1—1. . Recall now that 8 =n—I{—Fie Bi=n—1-05_,
for every i = 1,2,...,[. We conclude that the conditions 3; > «;, o; = 811
are equivalent ton — 1 — 87, , > aj, s Z2n—1—- 3 ie n—1 2o+
Bri1_s> i + Bf_; = n — [ respectively and the claim follows.
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1.2.2 Giambelli formula

Let us now recall the classical Giambelli formula which allows to compute
Schubert classes oy in terms of Schubert classes o,, 0 < a < k.

Theorem 1.6. If A is a partition contained in | X k rectangle then the Schu-
bert class oy in H*(Gr(1,V),Z) is given by o\ = det(oy,1j—i), where o; =0
fori <0 ori>k.

Corollary 1.7. Ring H*(Gr(l,V),Z) is generated (as an algebra over Z) by
Schubert classes o,, 0 < a < k.

1.3 Representation via generators and relations

We finish this section by recalling theorem which describes the ring H*(Gr (1, V), Z)
explicitly (using generators and relations).

Theorem 1.8. We have an isomorphism

H*(Gr(la V),Z) = Z[xb cee 7xl7q]/<yk’+17 cee 7yn—l>yn)

where y, == det(c14j—i)1<ij<p- Element x; corresponds to the ith Chern class
of the dual of the tautological bundle on Gr(l,V).

2 Moduli spaces of rational curves and quan-
tum cohomology

We fix a flag F,. Recall that X = Gr(l,W) is covered by Schubert cells
QS(F,), where A runs through partitions (A1, Ag,...,A;) such that n — [ >
A = ... =2 N = 0, recall that we denote the set of such partitions by
P(l x k). Recall also that we define 2, (F,) as the closure of Q5 (F,) and call
it a Schubert variety corresponding to .

For each integer d > 0 and the collection of partitions \q,..., Ay we
will define the number (Q,,,...,Q\,)a which can be thought as follows.
Choose generic points pq,...,py € P! and generic flags F},..., FN. Then
(Qy, -+, Qay )a is the number of algebraic morphisms f: P! — X of degree
d such that f(p;) € Qy,(F?) and is zero if the set of such maps is infinite.



Remark 2.1. Note that Schubert varieties Qy(F,) differ from Q,,(F?) by the
action of some element g; € GL(V) so the varieties Q,(F}) can be thought
as generic translates of the varieties Q,,(F,) respectively.

Remark 2.2. Note that for d = 0 the number (2,,,...,Q\,)o is just the
intersection number (2,,,...,Q ). Indeed morphism f: P' — X of de-
gree d should map whole P! to some point z € X. Now from the condi-
tions f(p;) € Q,(FY) we conclude that p € ), L, (FY) s0 (..., Ly)o =
(NN, 0, (FD)) = (- -+, Uy ), where the last equality holds since vari-
eties Qy,(F,), Qy, (F?) have the same cohomology classes in H*(Gr(l, V), C)
since the differ by the action of some ¢g; € GL(V) and GL(V') is connected.

To give a rigorous definition of the number (Qy,,..., Q) for d > 0
we need to understand how to think about the moduli space M, of mor-
phisms of degree d from P! to X geometrically. Note that for d = 0
this space is naturally identifies with X and by remark 2.2 we can define
gy o = (-, 2y ). For d > 0 we will analogically define
(Qxyy .-,y )a as an intersection pairing of certain varieties in a certain
compactification of M,.

To construct a scheme structure on M, we will first of all describe the
functor Sch®”” — Set which it should represent and then will deduce from
classical Grothendieck results that this functor is indeed represented by some
smooth quasi-projective scheme of finite type. We start from recalling a
description of the functor

Sch”” — Set, S — Map(S, Gr(l,V))

which represents Grassmannian Gr(l,V’). Let U be the tautological vector
bundle on Gr(l,V’) of rank [ which can be defined as follows. Recall the
identification Gr(l, V') ~ GL(V)/P and consider the standard representation
P ~ U. Then we can form the associated vector bundle U := GL(V') xp U
which we will call tautological.

Remark 2.3. Recall that if G is an algebraic group and H C G is an algebraic
subgroup then to any finite dimensional representation H ~ W we can
associate a vector bundle G xz W which can be defined as follows. We have
the following free right action G x W~ H, (g,w).h = (gh,h 'w) then
Gxy W := (G x W)/H. Note that G xg W has the natural projection
morphism G xy W — G/H which makes it a vector bundle.



Remark 2.4. Note that if the action H ~ W can be extended to the action
G ~ W then the vector bundle G xz W is trivial. Indeed we have the
isomorphism (G/H) x W - G x5 W given by ([g], w) — (g, g™ w).

Note that we have the natural embedding of vector bundles
U=GL(V)xpU < GL(V)*xpV =V ® Ox

which corresponds to the embedding U — V. Under this embedding fiber of
U over a point W € Gr(l, V) identifies with W C V.

Vector bundle U also has the following description which will be useful in
the proof of proposition 2.5. Recall the Pliicker embedding

v Gr(l, V) = P(A'V), W — A'W.
Recall that we have a natural derivative (contraction) map
contr: ATV AV =V, f@v e 0p(v).
Then the dual map contr*: V* — AF'V ® A*V* gives us the morphism
V* @ Opaiyy = A7V ® Opaiyy (1)

induced by the isomorphism T'(P(A'V), Opaiyy(1)) = ATV
By taking duals it gives us the morphism

b AlilV* & Op(Alv)(—l) -V X OIP’(AlV)‘

Fiberwise this morphism can be described as follows. Note that Op(pi1)(—1)
is a tautological bundle on P(A'V) so its fiber over a point P € P(A'V) is
P c AV considered as 1-dimensional vector space. Now starting from a
vector v € P C AV and f € A"'V* have ®p(f @ v) = O0¢(v). It now
follows from the definitions that we have & = Im ®|q. (1) since for any vector
v € A'V the support Supp(v) C V of this vector coincides with the image
contr(A"71V* @ Co).

We are now ready to formulate and prove the universal property of
Gr(l, V).

Proposition 2.5. For S € Sch the set Map(S, Gr(l,V)) identifies with the
set of pairs (p,E) consisting of a vector bundle € of rank | on S and an
injection of vector bundles £ < V ® Og.
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Proof. If f: S — X is any morphism then we can set £ := f*(U) and
v :=f*U<V ®0Ox).

In the opposite direction starting from a pair (¢, ) we can consider a
morphism

Ao ANE - AV ® 0.

It follows from the universal property of P(A'V) that there exists a morphism
8 = P(A'V) such that f*(Opaiyy(—1)) ~ A'E. Tt is clear from the
definitions that the image of f lies in Gr(l,V) C P(A!V) so we obtain the
desired morphism f: S — Gr(l,V). ]

We conclude that a morphism P! — Gr(l,V) is the same as the pair of
rank [ vector bundle £ on P! and an embedding £ <+ V @ Opi. Note that
the embedding of vector bundles £ «<» V' ® Op: is the same as the surjection
of vector bundles V* ® Op1 — £*. Note also that the condition that f has
degree d precisely means that deg(£*) = d, here deg(E*) := deg A"PE*,

Let us now define the functor M, : Sch’””? — Set. Note that the set
M(Spec(C)) =: My(C) must parametrize morphisms f: P! — X of degree
d or equivalently (by proposition 2.5) pairs (7, £) consisting of a vector bundle
& on P! of rank [ and a surjection V ® Op1 — £ of vector bundles such that
deg(€) = d.

Recall that if F is a coherent sheaf on a projective scheme X with a
fixed embedding ¢: X < P™ then there exists a unique polynomial Pz(t) of
degree < m such that Pr(n) = dimc(I'(X, F(n))) for n € Z,n > 0. This
polynomial is called Hilbert polynomial of (X, ¢).

Example 2.6. For X = P!, F a vector bundle of rank | and degree d,
v = Idpr we have Pr(t) = tl+1+d. Indeed by Birkhoff-Grothendieck theorem
every such F is isomorphic to the direct sum O(my) @ ...® O(my) for some
m; € Z so for m > 0 we have dim¢ D(PY, F(m)) = (mi +m+1) +... +
(my+m+1)=Im+1+d.

So we see that the condition that & € Vect(P') has degree d and rank [
can be compactly rewritten as Pg(t) = tl4+1+d. Note also that this approach
allows us to associate rank and degree to any coherent sheaf £ € Coh(P!).
Indeed if Pe(t) = at + b then we set 7(E) := a and d(€) := b — a and call
them rank and degree respectively.

Definition 2.7. Pick a test scheme S € Sch then M,(.S) is the set of pairs
(€, ), where £ is a locally free sheaf (vector bundle) on P! x S flat over S such
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that Pg, (t) =tl+1+d for any geometric point s of S, m: V*®@Opiyg — &€
is the surjection of wvector bundles.

Theorem 2.8. The functor My is represented by a smooth quasi-projective
scheme of dimension nd 4 (n — 1)l to be denoted by the same symbol.

To prove this theorem we define a smooth projective variety Q4 together
with an open embedding My — Qg .

Definition 2.9. Pick a test scheme S € Sch then Q4(S) is the set of pairs
(€, 7), where £ is a coherent sheaf on P! x S flat over S and such that
Pey,,  (t) =tl + 1+ d for any geometric point s of S, m: V* ® Opiyg — & is
the surjection of sheaves.

Note that we have the natural embedding of functors My — Q4. Now
theorem 2.8 follows from the theorem bellow.

Theorem 2.10. Functor Qg is represented by a smooth projective scheme of
dimension nd + (n — 1)l and the morphism My — Qg identifies My with an
open subscheme of Qq.

Proof. Follows from |Gr], see also |[N]. O

Example 2.11. Forl =1 (ie. Gr(l,V) = P"!) we have Q4 = Pr@+)-1,
It can be easily seen at the level of C-points: a point of Qq(SpecC) consists
of a coherent sheaf €& € Coh(P') of degree d and rank 1 and a surjection of
sheaves w: V* @ Op1 — E. Sheaf € must be of the form O(d) & F, where
F is the sum of finite number of skyscraper sheaves on P*. There are no
nonzero morphisms from Op1 to any skyscraper sheaf so we conclude that
F =0 (otherwise there are no surjection V* @ Op1 — E) i.e. £ = O(d). We
see that

Hom(V* ® Op1, &) = Hom(V* @ Op, O(d)) ~ V @ SY(C*)

and an element f € Hom(V* ® Op1,E) defines a surjective morphism of
sheaves iff f # 0. We conclude that Q4 = P(V @ S¥(C?")) = Prld+1)-1,

Note that by the universal property of Q4 applied to S = Qg and Id: Q; —
Q. we obtain a universal exact sequence of sheaves on P! x Qg :

0—=8 = V" "®Opyg, =+ Ta— 0.
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Sheaf S, is locally free (follows from the fact that 7, is flat over Q4). So we
can consider the dual universal map

u: V®O]P>1><Qd — S;

Now we can think about moduli space of morphisms P* — Gr(l,V) as
about a smooth algebraic variety My and we want to define algebraic varieties
Q) (F.) € M, which would parametrize morphisms f: P! — M, such that
f(p) € Qu\(F,), here A € P(l x k) and p € P! is some point. To do so we
need to define an evaluation morphism ev: P! x My — Gr(l,V).

Definition 2.12. For S € Sch define a map ev(S): (P' x My)(S) —
Gr(l,V)(S) as follows: note that a morphism f: S — P! x My defines us a
morphism S — M, (via the projection P! x My — M) which is the same
as the pair (€, 7) as in definition 2.7. Consider now the natural embedding
p:p X S =P xS andsend f to (13, u5m) € Gr(l,V)(S).

Note that directly from the definitions ev is a morphism of functors so
it induces a morphism of the corresponding varieties to be denoted by the
same symbol.

Example 2.13. Forl = 1 we have Gr(l,V) = P(V) and recall that Qg =
P(V®SIC*) and My C P(V®SIC?) is an open subset. Then the morphism
ev: P x My — P(V) is a restriction to P! x My of the birational morphism

P(C?) x P(V ® SC*") — P(V)
induced by the map C? @ (V ® SIC?") -V, 2@ v ® f + f(x)v.

Definition 2.14. For p € P!, A € P(Ix k) and a flag F, we define Q, ,(F,) as
the intersection ev™!(Qy(F,))N(px M,). It can be considered as a subscheme
of M, of codimension |\|.

Example 2.15. Assume that | = 1. Recall that for a fized flag Fy and
0 <a<n—1wehae Q(F,) = P(F,_,) C P(V). It follows from the
example 2.13 that for a point p = [z : y] € P' we have Qq,(F) = P(F,_4) N
My, where the intersection is taken in ]P’(V@Sd((:2*) and F’n_a is the preimage
of F,,_, under the linear map

V®SIC” -V, v f flo,y).



Let us now define compactifications Qy ,(F,) of the varieties Q) ,(F,) in
Qg (we will then define the desired numbers (2y,,...,{y)aq as intersection
pairings of cohomology classes €2 ,(F,) in the smooth variety Q). For [ =

1 we will just have Q,,(F,) = P(F,_,) C Qg (see the example 2.15 for
notations).

As we already see in the case [ = 1 (see example 2.13) the morphism
ev: P! x My — Gr(l,V) does not extend to a morphism P! x Q4 — Gr(l, V)
so we can not define varieties Qy,(F,) C Qg directly in the same way as
we have defined varieties 2 ,(F,) C My in definition 2.14. We will use a
universal morphism u: V' ® Opi,o, —+ S to define them.

Definition 2.16. For each i = 1,...,1, let D, ,(F,) C P' x Q, be the largest
subscheme on which the dimension of the kernel of u: Fj,_;_;1x, ® Op1xo, —
Sy is at least ¢, and let D; ), ,(Fs) be the intersection D; », ,(Fe) N (p X Qq)
considered as a subscheme of Q,;. Then we define

Dap(Fo) := Dy p(Fo) N .0 Dy, p(F).
This is a subscheme of Q4 of codimension |A|.
It is clear from the definitions that Q) ,(Fy) N Mg = Q,,(F.).

Example 2.17. It follows from example 2.15 and the definitions that for
l=1and0<a<n—1wehave Q,,(F,) =P(F,_,). Note also that

dim Q, ,(F.) = dim(F,_,) — 1 = nd + dim(F,,_,) =nd +n —a — 1
since the map
V®SIC” -V, v f flz,y)v

1s clearly surjective. We conclude that the codimension of ﬁmp(F.) mn Qg
indeed equals to a.

Let us denote by 7, € H™(Q,4,Z) the cohomology class of Qy ,(F,). We
are now ready to define Gromov-Witten numbers (2, ..., Q2 )a-

Definition 2.18. For A\y,..., Ay € P(I x k) let (..., )a be zero if
|A1] + |Ae] + ... + |N] # dimMy = nd + (n — 1)l. Otherwise we define
(.-, Uy )a as the intersection pairing of the cohomology classes 7, €

H*(Qq4,C).
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Example 2.19. Assumel = 1 then Ay, ..., Ay are just some numbers aq,...,ay
such that 0 < a; < n— 1. Let us now compute the numbers (Qa,, ..., Loy )d-

We assume that a; + ...+ ay =n(d+ 1) — 1 (otherwise this number is zero
by the definition). It follows from example 2.11 that Q; = P(V ® S4C?") =
PYD=1 50 we have an isomorphism H*(Qq, Z) ~ Z[t]/t"*™V) and by exam-
ple 2.17 we have ﬁp@(F.) = }P’(Fn_ai) for certain subspace Fn_ai C V®siCc?”
of codimension a; so we have @,, = t%. We conclude that (Qq,, ..., Qay)a =
1.

2.1 Small quantum cohomology ring

We can now define the small quantum cohomology ring QH*(Gr(l,V),Z) :=
H*(Gr(l,V),Z)®zZ[q] and set 6 := 0 \®1. The ring structure on QH*(Gr(l, V), Z)
is defined by

5’)\ . &H = Z <Q)\, Q'u, Qyt>dqd5'y.

v,d=>0

It is a nontrivial fact that - defines an associative ring structure.
Example 2.20. Consider the case l = 1. In this case \, pi, v are just numbers
0 < a,b,c <n—1andit follows from example 2.19 that (Qq, %, Lp—1-c)a =0
if a+b+n—c # n(d+1) and is 1 otherwise. We conculde that QH*(Gr(l,V'),Z)

is isomorphic to Z[t,q]/(t" — q) via the map o, — t*. Note that for ¢ = 0 we
obtain the cohomology ring of P71,

In the example bellow we have explicitly described the ring Q H*(Gr(l, V'), Z)
for [ = 1. The goal of the next sections is to generalize this result to the case
of arbitrary I.

3 Main tools

We start from the following definition.

Definition 3.1. If A is a subset of Gr(/, V') then we define Span A to be the
sum » o4 W. We also define ker A as the intersection [, W.

Example 3.2. For A= {W} € Gr(l,V) we have Span A =ker A=W C V.
For A = Gr(l,V) we have Span A =V, ker A = 0.
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Remark 3.3. Note that for a fixed subspace F' C V and a subvariety A C
Gr(l,V) we have Span A C F (resp. F' C ker A) iff A C Gr(l, K) (resp. A C
Gr(l —dim K,V/K) C Gr(l,V)). Note also that if i: Gr(l,V)—=> Gr(n —
L,V*), W Ann W is the natural identification. Then

Spani(A) = Ann(ker A), ker A = Ann(Span A).

Lemma 3.4. Let C' be a rational curve of degree d in X. Then SpanC' has
dimension at most Il + d and ker C' has dimension at least | — d.

Proof. Curve C' is an image of a regular function f: P! — X of degree
d. By proposition 2.5 this map corresponds to & = f*(U) C V & Op,
o = f*(U <= V ® Op). Point p € P! goes to £, C V € X. Condition
that deg f = d corresponds to deg€ = —d. Therefore & = ®'_,Opi(—a;),
where a; > 0, Zizl a; = d. Each map V* ® Op1 — Opi(a) is defined by
map on global sections ¢: V* — I'(Opi(a)). Taking duals we see that map
Opi(—a) = V ® Op: is given by map ¢*: I'(Opi(a))* — V. Hence map from
E to V ® Op is given by ¢%,...,¢F. It is easy to see that for any p € P!
its image is L = Span(vy,...,v;) where v; € Im ¢f. Therefore span of C' is
contained in UIm ¢, so it has dimension at most

D dim¢; <Y dimT(Op(a) =Y (1+a;)=1+d

On the other hand at least [ — d of a; equal to 0. In this case a; = 0 we have
Im¢; = 1. So any L contains Im ¢; for this i. We deduce that kernel of C'
has dimension at least [ — d. O]

If X is a partition and d is a nonnegative integer we define ) to be the par-
tition obtained by removing the leftmost d columns from the Young diagram

of d, i.e. X; = max(\; — d,0).

Lemma 3.5. Let C C X be a rational curve of degree d < k and let E C'V
be an |+ d dimensional subspace containing the span of C'. If \ is a partition
such that C N Q5\(F,) # @ then W belongs to the Schubert variety Q5(F,) in
Gr(l+4d,V).

Proof. Recall that the Schubert variety 2, (F,) is defined as

{W eX | dim(WﬂFk+i_,\i) >1V1<i< l}
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Let W € C N Qy\(F,). By definition W C E. Hence dim(E N Fiy;—y,) =
dim(W N Fyyi—y,) = i for all 1 < i < I. On the other hand Fy gz, =
Frnin(k+i—x;, k—d+i)- Intersection of [+ d dimensional subspace F with k& —d +1
dimensional subspace Fj_4.; has dimension at least i. Therefore dim(E N
Fy_4pis,) = 1. We deduce that E belongs to Q5(F.). O

Corollary 3.6. If Q5 N Q, NQy = O then (Qy,Q,,,)q = 0.

This corollary allows us to deduce statements about the quantum coho-
mology from statements about the usual cohomology.

Recall that for a partition A we denote by ¢(A\) the number of nonzero
rows of A. The following lemma is very useful.

Lemma 3.7. Let A\ and p be partitions contained in | X k rectangle such that
LA +1(n) < 1. Then

6—A'(~7u:(O—A'Uu)®1

Proof. Suppose that d > 1 and v is a partition such that |A| + |u| + |v| =
Ik +nd. Then we have

N+l +12] = [N+l +|v|—21d = lk+nd—21d = lk+kd—1d > (I1+d)(k—d)

It follows that for general flags F,, Go, Ho we have Q;(F,) N Qu(G,) N
Q;(H,) = @. Using Corollary 3.6 we get (Q\,€Q,,Q,)¢ = 0. The lemma
follows. O

4 Quantum Pieri and Giambelli formulas

Using the results of section 3 we are ready to formulate and prove quantum
versions of Pieri and Giambelli formulas.

4.1 Quantum Pieri

We start from the following lemma. Recall that the number (Q,, 2z, ;)4 is
nonzero only if |a| + || +p = l(n — 1) + dn.

Lemma 4.1. Ford > 1 let o, € P(l x k),1 < p < n —1 be such that
la| + |8l +p=1n—1)+dn. Then we have
(Qa,Q25,Q5)0 for d=1 and l(a) = {(B) =1,

0 otherwise.

(Qa, 5, Qp)a = {
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Proof. Let C be a rational curve of degree d in Gr(/, V') which intersects with
each of the varieties Q,(F,), Q3(G.), Q,(H,) for generic flags F,, Go, Ho. It
follows from lemma 3.4 that there exists £ C V of dimension [ + d such that
Span C' C E. By lemma 3.5 we must have E' € Q4 (F,)NQ3(Ge)NQs(H,) and
in particular Q4 (Fe) N Qs(Ge) N Q(H,) # D. Recall that the codimensions
of Q4(Fe),Q25(Ge), Q(He) C Gr(l +d,V) are |al, 8], 19| respectively and
dim Gr(l+d, F) = (I+d)(n —l — d). We conclude that

G| + 18] +p < (I + d)(n—1—d). (1)

Note also that a, 3 lie in an [ X (n—[) rectangle so directly from the definitions
we have |&| > |a| —1d, |5 = | 5| —1d. We also have p = max(p—d,0) > p—d.
Altogether we obtain

&+ 18] +p= o]+ 18 —2d+p—d=(1+d)(n—1—d) +d*—d (2)

We conclude from (1) and (2) that 0 > d* —d, hence, we must have d = 1 and
moreover {(a) = ((3) =1, |a|+|B|+p = (I+1)(n—1—1). So we have shown
that (Qq,Qs,Q;)qa = 0ford > 1 orif {(a) # L or () # . Assume that d = 1
and note that (4,23, Q)0 is nonzero only if &[4+ 6]+ p = (I+d)(n—1—d).
We now conclude from (2) that (2,5, 2s)0 = 0 if £(a) # [ or £(B8) # 0.

Let us now assume that d = 1 and ¢(«) = ¢(f) = [, hence, &; = a; —
1, BZ = f; — 1 for all i« = 1,2,...,[. Recall that our goal is to show that
(Qa, Qp, )1 = (4, Q3,Qp)o. Recall that by proposition 1.4 we have either
<Qd79379g>0 =0or (Q&, QB’Q%>O = 1.

Case 1: If (Q4, 5, 2s)0 = 0 then we must have (Qq, s, ;)1 = 0 since
otherwise there exists a curve C' of degree 1 in Gr(l, V') which intersects with
each of the varieties Q,(F,), Q3(G.), 2;(H,) for generic flags F,, G, Ho. It
then follows from lemma 3.5 that Span C' C €4 N5 N(2; and this contradicts
to the fact that (4,23, Q;)0 = 0.

Case 2: If (Q4,€5,Q;)0 = 1 then there exists a unique W C V of di-
mension | + 1 such that W € Q4(Fo) N Q3(Ge) N Q(H,). 1f C is a ratio-
nal curve of degree 1 in Gr(l,V') wich intersects with each of the varieties

Qu(F,), Q5(G.), ;(H,) then by lemma 3.5 we must have Span C' = W so
C c Gr(l,W) C Gr(L,V). (3)

Recall now that W € Q4(F,) N QB(G°) N Q:(H,) and flags F,,G,., H, are
generic so W must lie in the interiors of Schubert varieties above i.e.

dlm(W N Fn—l—l—‘ri—di) = dlm(W N anlflJrif/;’i) = 1.
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Recall that &; = a; — 1, B, = f; — 1 so we conclude that
dlm(W N Fk—i—i—ai) = dlm(W N F/H—i—ﬂi) =iVi= 1, 2, ceey [. (4)

In particular we obtain dim(W N F,_,,) = dim(W N G,—5) = [. Set
Vii=WnNFE,_a, Vo :=WNG,_p. It follows from (4) that V; € Q,(F,), V2 €
3(G,.). Note also that codimensions of Q,(F,), Q23(Ge) in Gr(l,V) are
lal, | 5] respectively and |a| + |f] = dim Gr(l,V) +n —p > dim Gr(l,V)
so we must have (1, N Qg = @ for generic F,,G,. It follows that V; # V;
so dim(V; N'V3) < 1 — 1. Recall also that Vi, Vo, € W and dimW =1+ 1
so we must have dim(V; N'V5) > 1 — 1. We conclude that S := V; NV, has
dimension [ — 1.

Let us return now to our C. Pick V{ € C N Q,(F,), V4 € CNQs(G,).
By the definitions we have V{, VJ C Span C' = W. On the other hand by the
definitions Vi C F,,_,,, V3 C G,,—p,. We conclude that V/ ¢ WNEF,_,,, V5 C
W N Gy_p, so we must have V/ = V;, Vo = Vj because of the dimension
estimates. It follows that S C ker C' but both these varieties have dimension
[ — 1 so we conclude that S = ker C'. It now follows from the equalities
S = kerC, W = SpanC that C C P(W/S), hence, C = P(W/S) since C
is projective of dimension 1 and P(W/S) ~ P!. So we have shown that
(Q0,05,9,)1 < 1. To show that (Q,,Qs,9,)1 = 1 It remains to check
that P(W/S) C Gr(l,V) intersects with Q,(F,), Q3(G.), ,(H,). Note that
Vi € PW/S) N Qu(F,), Vo € P(W/S) N Qs(G,). Let us denote by V3 € W
any subspace of dimension [ which contains S and W N H,_;_,41. By the
definition S C V3 C W so V5 € P(W/S). Note also that V5 € Q,(H,) since
VaNHy_141-p D W N H,_11—, and the latter has dimension 1. We conclude
that V3 € P(W/S) N Q,(H,) and the claim follows.

O

Theorem 4.2. Pick A € P(I x k) and 0 < p < n — 1. Then we have

Op- Oy = Z ou+q Z oy (5)

sl =[A+p v,|v|=|Al+p—n
N—I>p; 2N 2 i1 Ai—12v2X41—-120

Proof. Directly follows from the classical Pieri formula (see proposition 1.4)
and lemma 4.1. O

Remark 4.3. Note that the first sum in (5) is taken over all u that can be
obtained from A by adding p boxes with no two in the same column and the
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second sum is zero if /(\) < [ and otherwise is taken over all v such that v
that can be obtained from (A; —1,...,\;—1) by adding [ + p — n boxes with
no two in the same column.

4.2 Quantum Giambelli

We can now prove the quantum version of the Giambelli theorem.

Theorem 4.4 ([Be|). If X is a partition contained in | X k rectangle then
the Schubert class &y in QH* Gr(l,V) is given by 6\ = det(Gx,4,—i), where
o, =0 fori<0ori>k.

Proof. Let us prove that if 0 < i; <k for 1 < j < [ltheno; -04----0; =
(04,:0iy-. . .-04,)®1, i.e. no ¢-terms show up when the first product is expanded
in the quantum ring. Using theorem 4.2 we easily prove by induction on j
that the expansion of ¢;, - 74, - ... g;; involves no g-terms and no partitions
of length greater than j.

Another proof of this uses lemma 3.7 and the fact that expansion of
o) -0, contains no terms of length greater than [(\) +{(x). This fact follows
from Littlewood-Richardson rule. Here we need this fact only for = (p) =
(p,0,0,...,0), so it follows from the usual Pieri rule.

Since det(0x4j-1) = >oreg, (1)@ T, 65 4n()— we deduce that

det(a')\i+j_i) = det(o,\iﬂ-_i) ®1= oy X 1= 5’)\

5 Presentation via generators and relations

Let A := QH*(X,7Z). We define ¢; € A as ¢; = ¢y For p > 1 we define
6, = det(c14j-i)1<ij<p- For p < n using Lemma 3.7 or Theorem 4.2 we have
op, = 0,®1. Hence this definition agrees with previous definition of 7,,. Using
this definition of ¢, and first row decomposition of determinant we get

l

> (~1)'6mici =0 (6)

i=1

Lemma 5.1. We have 6, = (—1)""1q.
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Proof. Using quantum Pieri and (6) we get

6= (—1)"5p60 = (1) g

Proposition 5.2. We have an isomorphism of Z-algebras

H*(Gr(la V)u Z) = Z’[xla <oy Ig Q]/(yk-l—lu coyYn—1,Yn + (_1)IQ>
gwen by ¢; — x;, here y, == det(x14j-i)1<ij<p-

Proof. Let

B:=7Z[x1, ..., 21,4/ Yks1s- s Yn-1,Yn + (—1)lq)

where 0, = det(ci4j_i)1<ij<p- Using lemma 5.1 we get well-defined map
¢: B— A, ¢(z;) = ¢;. Ring A is a free Z[g]-module. A standard algebraic
lemma says that a map ¢: M — N of Z[q]-modules with N free is an isomor-
phism if and only if induced map ¢': M/qM — N/qN is an isomorphism.
Hence it is enough to prove that ¢': B/¢B — A/qA is an isomorphism. We
have B/qB = Z[x1, ..., x|/ (Yk+1,---,Yn), AJ/qA = H(X,Z), ¢'(x;) = c.
Using presentation of H*(X) via generators and relations (theorem 1.8) we
deduce that ¢’ is an isomorphism. ]
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