Quantum cohomology of Grassmannians

Daniil Kliuev and Vasily Krylov

September 2, 2023

Abstract

We recall definition of (small) quantum cohomology of Grassmannians following [Be], give technical details and then give elementary proofs of the main theorems about the quantum cohomology of Grassmannians following Buch's paper ([Bu]). Namely, we prove quantum Giambelli and quantum Pieri formulas and the presentation of quantum cohomology ring.

1 Recollections on cohomologies of Grassmanninans

1.1 Main definitions

Let us fix some notations. Pick $l, n \in \mathbb{Z}_{\geq 0}$, $l \leq n$ and let V be a vector space of dimension n over complex numbers. We denote by $\operatorname{Gr}(l, V)$ the Grassmanian parametrizing l-dimensional subspaces $W \subset V$. We denote by ι : $\operatorname{Gr}(l, V) \hookrightarrow \mathbb{P}(\Lambda^l(V))$ the Plüker embedding which sends $W \subset V$ to $\Lambda^l(W) \in \mathbb{P}(\Lambda^l(V))$. One can show that $\operatorname{Gr}(l, V)$ is a complex projective algebraic variety of dimension lk, here k := n - l.

Note that we have the natural left action $\operatorname{GL}(V) \curvearrowright \operatorname{Gr}(l, V)$: element $g \in \operatorname{GL}(V)$ sends $W \in \operatorname{Gr}(l, V)$ to $g(W) \in \operatorname{Gr}(l, V)$. It is clear that this action is transitive. Let us fix any point $U \in \operatorname{Gr}(l, V)$ and denote by $P \subset \operatorname{GL}(V)$ the stabilizer of U. Then we have the natural identification $G/P \xrightarrow{\sim} \operatorname{Gr}(l, V), g \mapsto g(U)$ which we will use later to define the tautological bundle on $\operatorname{Gr}(l, V)$.

Let us denote by $P(l \times k)$ the set of *l*-tuples of integers $(\lambda_1, \lambda_2, \ldots, \lambda_l)$ such that $k \ge \lambda_1 \ge \ldots \ge \lambda_l \ge 0$. Note that $P(l \times k)$ is nothing else but the set of partitions which lie in the rectangle $l \times k$. For a flag F_{\bullet} and $\lambda \in P(l \times k)$ we define the Schubert cell $\Omega^{\circ}_{\lambda}(F_{\bullet}) \subset \operatorname{Gr}(l, V)$ as follows:

$$\Omega^{\circ}_{\lambda}(F_{\bullet}) := \{ W \in \operatorname{Gr}(l, V) \mid \dim(W \cap F_{k-i+\lambda_i}) = i \ \forall \ i = 1, \dots, l \}.$$

Schubert cell $\Omega^{\circ}_{\lambda}(F_{\bullet})$ has codimension $|\lambda|$ in $\operatorname{Gr}(l, V)$, and is isomorphic to $\mathbb{A}^{lk-|\lambda|}$. We have a disjoint decomposition

$$\operatorname{Gr}(l, V) = \bigsqcup_{\lambda \in P(l \times k)} \Omega_{\lambda}^{\circ}(F_{\bullet})$$

To each $\lambda \in P(l \times k)$ we can also associate a Schubert variety which can be defined as follows:

$$\Omega_{\lambda}(F_{\bullet}) := \{ W \in \operatorname{Gr}(l, V) \mid \dim(W \cap F_{k-i+\lambda_i}) \ge i \ \forall \ i = 1, \dots, l \}.$$

Varieties $\Omega_{\lambda}(F_{\bullet})$ are closed subvarieties of $\operatorname{Gr}(l, V)$ of codimension $|\lambda|$, we can also describe $\Omega_{\lambda}(F_{\bullet})$ as the Zariski closure of $\Omega_{\lambda}^{\circ}(F_{\bullet})$.

Example 1.1. For l = 1 we have $\operatorname{Gr}(l, V) = \mathbb{P}^{n-1}$ and Schubert varieties are parametrized by numbers $0 \leq a \leq n-1$. Schubert variety corresponding to $0 \leq a \leq n-1$ and a flag F_{\bullet} is precisely $\mathbb{P}(F_{n-a}) \subset \mathbb{P}(V)$.

For $\lambda \in P(l \times k)$ we denote by $\sigma_{\lambda} \in H^{2|\lambda|}(\operatorname{Gr}(l, V), \mathbb{Z})$ the cohomology class of $\Omega_{\lambda}(F_{\bullet})$ (note that it does not depend on F_{\bullet} since for any two flags $F_{\bullet}, F'_{\bullet}$ there exists $g \in \operatorname{GL}(V)$ such that $g(F_{\bullet}) = F'_{\bullet}$ so $g(\Omega_{\lambda}(F_{\bullet})) = \Omega_{\lambda}(F'_{\bullet})$ and now it remains to note that $\operatorname{GL}(V)$ is connected). For $\lambda_1, \lambda_2, \ldots, \lambda_N \in$ $P(l \times k)$ we denote by $\langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle \in \mathbb{Z}$ the intersection pairing of these subvarieties of $\operatorname{Gr}(l, V)$ (which is by the definition zero if $|\lambda_1| + \ldots + |\lambda_N| \neq$ $\dim \operatorname{Gr}(l, V) = lk$).

For a partition $\lambda \in P(l \times k)$ we denote by λ^c the following partition: $\lambda^c = (k - \lambda_l, k - \lambda_{l-1}, \dots, k - \alpha_1)$. The following proposition is standard.

Proposition 1.2. For $\lambda, \mu \in P(l \times k)$ we have

$$\langle \Omega_{\lambda}, \Omega_{\mu} \rangle = \begin{cases} 1 & \text{if } \lambda = \mu^c \\ 0 & \text{otherwise} \end{cases}.$$

Corollary 1.3. For any $\lambda_1, \lambda_2, \ldots, \lambda_N \in P(l \times k)$ we have

$$\sigma_{\lambda_1} \cdot \ldots \cdot \sigma_{\lambda_N} = \sum_{\mu} \langle \Omega_{\mu^c}, \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle \sigma_{\mu}.$$

Proof. We can write $\sigma_{\lambda_1} \cdot \ldots \cdot \sigma_{\lambda_N} = \sum_{\mu} c_{\mu} \sigma_{\mu}$ for some $c_{\mu} \in \mathbb{Z}$. It follows from proposition 1.2 that $\sigma_{\mu^c} \cdot \sigma_{\lambda_1} \cdot \ldots \cdot \sigma_{\lambda_N} = c_{\mu} \sigma_{\mu^c} \cdot \sigma_{\mu}$. It again follows from proposition 1.2 and definitions that

$$\sigma_{\mu^c} \cdot \sigma_{\lambda_1} \cdot \ldots \cdot \sigma_{\lambda_N} = \langle \Omega_{\mu^c}, \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle \sigma_{\mu^c} \cdot \sigma_{\mu}$$

and the claim follows.

1.2 Pieri and Giambelli formulas

To $1 \ge p \ge k$ we can associate a partition $(p, 0, 0, \dots, 0) \in P(l \times k)$ and denote by Ω_p the corresponding Schubert variety.

1.2.1 Pieri formula

Proposition 1.4. We have $\sigma_p \cdot \sigma_\alpha = \sum_{\beta} \sigma_{\beta}$, where the sum is taken over all β that can be obtained by adding *i* boxes to α with no two in the same column.

Remark 1.5. Note that the Pieri formula is equivalent to the following statement about intersection pairing of Schubert varieties. If $\alpha, \beta \in P(l \times k), 0 \leq p \leq k$ are such that $|\alpha| + |\beta| + p = \dim \operatorname{Gr}(l, V) = l(n-l)$ then

$$\langle \Omega_{\alpha}, \Omega_{\beta}, \Omega_{p} \rangle = \begin{cases} 1 \text{ if } \alpha_{i} + \beta_{l-i} \ge n-l \text{ and } \alpha_{i} + \beta_{l+1-i} \le n-l \\ 0, \text{ otherwise .} \end{cases}$$

Indeed recall that

$$\sigma_p \cdot \sigma_\alpha = \sum_{\beta} \langle \Omega_\alpha, \Omega_{\beta^c}, \Omega_p \rangle \sigma_\beta.$$

Note now that β can be obtained by adding p boxes to α with no two in the same column iff $\beta_i \ge \alpha_i$ for every $i = 1, 2, \ldots, l$ and $\alpha_i \ge \beta_{i+1}$ for $i = 1, 2, \ldots, l-1$. Recall now that $\beta_i^c = n - l - \beta_{l+1-i}$ i.e. $\beta_i = n - l - \beta_{l+1-i}^c$ for every $i = 1, 2, \ldots, l$. We conclude that the conditions $\beta_i \ge \alpha_i, \alpha_i \ge \beta_{i+1}$ are equivalent to $n - l - \beta_{l+1-i}^c \ge \alpha_i, \alpha_i \ge n - l - \beta_{l-i}^c$ i.e. $n - l \ge \alpha_i + \beta_{l+1-i}^c, \alpha_i + \beta_{l-i}^c \ge n - l$ respectively and the claim follows.

1.2.2 Giambelli formula

Let us now recall the classical Giambelli formula which allows to compute Schubert classes σ_{λ} in terms of Schubert classes σ_a , $0 \leq a \leq k$.

Theorem 1.6. If λ is a partition contained in $l \times k$ rectangle then the Schubert class σ_{λ} in $H^*(\operatorname{Gr}(l, V), \mathbb{Z})$ is given by $\sigma_{\lambda} = \det(\sigma_{\lambda_i+j-i})$, where $\sigma_i = 0$ for i < 0 or i > k.

Corollary 1.7. Ring $H^*(Gr(l, V), \mathbb{Z})$ is generated (as an algebra over \mathbb{Z}) by Schubert classes σ_a , $0 \leq a \leq k$.

1.3 Representation via generators and relations

We finish this section by recalling theorem which describes the ring $H^*(\operatorname{Gr}(l, V), \mathbb{Z})$ explicitly (using generators and relations).

Theorem 1.8. We have an isomorphism

$$H^*(\operatorname{Gr}(l,V),\mathbb{Z}) \cong \mathbb{Z}[x_1,\ldots,x_l,q]/(y_{k+1},\ldots,y_{n-1},y_n)$$

where $y_p := \det(c_{1+j-i})_{1 \le i,j \le p}$. Element x_i corresponds to the *i*th Chern class of the dual of the tautological bundle on $\operatorname{Gr}(l, V)$.

2 Moduli spaces of rational curves and quantum cohomology

We fix a flag F_{\bullet} . Recall that $X = \operatorname{Gr}(l, W)$ is covered by Schubert cells $\Omega_{\lambda}^{\circ}(F_{\bullet})$, where λ runs through partitions $(\lambda_1, \lambda_2, \ldots, \lambda_l)$ such that $n - l \geq \lambda_1 \geq \ldots \geq \lambda_l \geq 0$, recall that we denote the set of such partitions by $P(l \times k)$. Recall also that we define $\Omega_{\lambda}(F_{\bullet})$ as the closure of $\Omega_{\lambda}^{\circ}(F_{\bullet})$ and call it a Schubert variety corresponding to λ .

For each integer $d \ge 0$ and the collection of partitions $\lambda_1, \ldots, \lambda_N$ we will define the number $\langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle_d$ which can be thought as follows. Choose generic points $p_1, \ldots, p_N \in \mathbb{P}^1$ and generic flags $F_{\bullet}^1, \ldots, F_{\bullet}^N$. Then $\langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle_d$ is the number of algebraic morphisms $f \colon \mathbb{P}^1 \to X$ of degree d such that $f(p_i) \in \Omega_{\lambda_i}(F_{\bullet}^i)$ and is zero if the set of such maps is infinite. Remark 2.1. Note that Schubert varieties $\Omega_{\lambda}(F_{\bullet})$ differ from $\Omega_{\lambda_i}(F_{\bullet}^i)$ by the action of some element $g_i \in \operatorname{GL}(V)$ so the varieties $\Omega_{\lambda_i}(F_{\bullet}^i)$ can be thought as generic translates of the varieties $\Omega_{\lambda_i}(F_{\bullet})$ respectively.

Remark 2.2. Note that for d = 0 the number $\langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle_0$ is just the intersection number $\langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle$. Indeed morphism $f \colon \mathbb{P}^1 \to X$ of degree d should map whole \mathbb{P}^1 to some point $x \in X$. Now from the conditions $f(p_i) \in \Omega_{\lambda_i}(F^i_{\bullet})$ we conclude that $p \in \bigcap_i \Omega_{\lambda_i}(F^i_{\bullet})$ so $\langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle_0 = #(\bigcap_{i=1}^N \Omega_{\lambda_i}(F^i_{\bullet})) = \langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle$, where the last equality holds since varieties $\Omega_{\lambda_i}(F_{\bullet}), \Omega_{\lambda_i}(F^i_{\bullet})$ have the same cohomology classes in $H^*(\operatorname{Gr}(l, V), \mathbb{C})$ since the differ by the action of some $g_i \in \operatorname{GL}(V)$ and $\operatorname{GL}(V)$ is connected.

To give a rigorous definition of the number $\langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle_d$ for d > 0we need to understand how to think about the moduli space \mathcal{M}_d of morphisms of degree d from \mathbb{P}^1 to X geometrically. Note that for d = 0this space is naturally identifies with X and by remark 2.2 we can define $\langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle_0 := \langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle$. For d > 0 we will analogically define $\langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle_d$ as an intersection pairing of certain varieties in a certain compactification of \mathcal{M}_d .

To construct a scheme structure on \mathcal{M}_d we will first of all describe the functor $\mathbf{Sch}^{opp} \to \mathbf{Set}$ which it should represent and then will deduce from classical Grothendieck results that this functor is indeed represented by some smooth quasi-projective scheme of finite type. We start from recalling a description of the functor

$$\mathbf{Sch}^{opp} \to \mathbf{Set}, S \mapsto \mathrm{Map}(S, \mathrm{Gr}(l, V))$$

which represents Grassmannian $\operatorname{Gr}(l, V)$. Let \mathcal{U} be the tautological vector bundle on $\operatorname{Gr}(l, V)$ of rank l which can be defined as follows. Recall the identification $\operatorname{Gr}(l, V) \simeq \operatorname{GL}(V)/P$ and consider the standard representation $P \curvearrowright U$. Then we can form the associated vector bundle $\mathcal{U} := \operatorname{GL}(V) *_P U$ which we will call *tautological*.

Remark 2.3. Recall that if G is an algebraic group and $H \subset G$ is an algebraic subgroup then to any finite dimensional representation $H \curvearrowright W$ we can associate a vector bundle $G *_H W$ which can be defined as follows. We have the following free right action $G \times W \curvearrowleft H$, $(g, w).h = (gh, h^{-1}w)$ then $G *_H W := (G \times W)/H$. Note that $G *_H W$ has the natural projection morphism $G *_H W \to G/H$ which makes it a vector bundle. Remark 2.4. Note that if the action $H \curvearrowright W$ can be extended to the action $G \curvearrowright W$ then the vector bundle $G *_H W$ is trivial. Indeed we have the isomorphism $(G/H) \times W \xrightarrow{\sim} G *_H W$ given by $([g], w) \mapsto (g, g^{-1}w)$.

Note that we have the natural embedding of vector bundles

$$\mathcal{U} = \mathrm{GL}(V) *_P U \hookrightarrow \mathrm{GL}(V) *_P V = V \otimes \mathcal{O}_X$$

which corresponds to the embedding $U \hookrightarrow V$. Under this embedding fiber of \mathcal{U} over a point $W \in \operatorname{Gr}(l, V)$ identifies with $W \subset V$.

Vector bundle \mathcal{U} also has the following description which will be useful in the proof of proposition 2.5. Recall the Plücker embedding

$$\iota\colon\operatorname{Gr}(l,V)\hookrightarrow\mathbb{P}(\Lambda^l V),\,W\mapsto\Lambda^l W.$$

Recall that we have a natural derivative (contraction) map

contr:
$$\Lambda^{l-1}V^* \otimes \Lambda^l V \to V, f \otimes v \mapsto \partial_f(v).$$

Then the dual map contr^{*}: $V^* \to \Lambda^{k-1} V \otimes \Lambda^k V^*$ gives us the morphism

$$V^* \otimes \mathcal{O}_{\mathbb{P}(\Lambda^l V)} \to \Lambda^{l-1} V \otimes \mathcal{O}_{\mathbb{P}(\Lambda^l V)}(1)$$

induced by the isomorphism $\Gamma(\mathbb{P}(\Lambda^l V), \mathcal{O}_{\mathbb{P}(\Lambda^l V)}(1)) \simeq \Lambda^l V^*$.

By taking duals it gives us the morphism

$$\Phi \colon \Lambda^{l-1}V^* \otimes \mathcal{O}_{\mathbb{P}(\Lambda^l V)}(-1) \to V \otimes \mathcal{O}_{\mathbb{P}(\Lambda^l V)}.$$

Fiberwise this morphism can be described as follows. Note that $\mathcal{O}_{\mathbb{P}(\Lambda^l V)}(-1)$ is a tautological bundle on $\mathbb{P}(\Lambda^l V)$ so its fiber over a point $P \in \mathbb{P}(\Lambda^l V)$ is $P \subset \Lambda^l V$ considered as 1-dimensional vector space. Now starting from a vector $v \in P \subset \Lambda^l V$ and $f \in \Lambda^{l-1}V^*$ have $\Phi_P(f \otimes v) = \partial_f(v)$. It now follows from the definitions that we have $\mathcal{U} = \operatorname{Im} \Phi|_{\operatorname{Gr}(l,V)}$ since for any vector $v \in \Lambda^l V$ the support $\operatorname{Supp}(v) \subset V$ of this vector coincides with the image $\operatorname{contr}(\Lambda^{l-1}V^* \otimes \mathbb{C}v)$.

We are now ready to formulate and prove the universal property of $\operatorname{Gr}(l, V)$.

Proposition 2.5. For $S \in$ Sch the set Map(S, Gr(l, V)) identifies with the set of pairs (φ, \mathcal{E}) consisting of a vector bundle \mathcal{E} of rank l on S and an injection of vector bundles $\mathcal{E} \hookrightarrow V \otimes \mathcal{O}_S$.

Proof. If $f: S \to X$ is any morphism then we can set $\mathcal{E} := f^*(\mathcal{U})$ and $\varphi := f^*(\mathcal{U} \hookrightarrow V \otimes \mathcal{O}_X)$.

In the opposite direction starting from a pair (φ, \mathcal{E}) we can consider a morphism

$$\Lambda^l \varphi \colon \Lambda^l \mathcal{E} \to \Lambda^l V \otimes \mathcal{O}_S.$$

It follows from the universal property of $\mathbb{P}(\Lambda^l V)$ that there exists a morphism $\overline{f}: S \to \mathbb{P}(\Lambda^l V)$ such that $\overline{f}^*(\mathcal{O}_{\mathbb{P}(\Lambda^l V)}(-1)) \simeq \Lambda^l \mathcal{E}$. It is clear from the definitions that the image of \overline{f} lies in $\operatorname{Gr}(l, V) \subset \mathbb{P}(\Lambda^l V)$ so we obtain the desired morphism $f: S \to \operatorname{Gr}(l, V)$. \Box

We conclude that a morphism $\mathbb{P}^1 \to \operatorname{Gr}(l, V)$ is the same as the pair of rank l vector bundle \mathcal{E} on \mathbb{P}^1 and an embedding $\mathcal{E} \hookrightarrow V \otimes \mathcal{O}_{\mathbb{P}^1}$. Note that the embedding of vector bundles $\mathcal{E} \hookrightarrow V \otimes \mathcal{O}_{\mathbb{P}^1}$ is the same as the surjection of vector bundles $V^* \otimes \mathcal{O}_{\mathbb{P}^1} \twoheadrightarrow \mathcal{E}^*$. Note also that the condition that f has degree d precisely means that deg $(\mathcal{E}^*) = d$, here deg $(\mathcal{E}^*) := \operatorname{deg} \Lambda^{top} \mathcal{E}^*$.

Let us now define the functor \mathcal{M}_d : $\operatorname{Sch}^{opp} \to \operatorname{Set}$. Note that the set $\mathcal{M}_d(\operatorname{Spec}(\mathbb{C})) =: \mathcal{M}_d(\mathbb{C})$ must parametrize morphisms $f: \mathbb{P}^1 \to X$ of degree d or equivalently (by proposition 2.5) pairs (π, \mathcal{E}) consisting of a vector bundle \mathcal{E} on \mathbb{P}^1 of rank l and a surjection $V \otimes \mathcal{O}_{\mathbb{P}^1} \twoheadrightarrow \mathcal{E}$ of vector bundles such that $\operatorname{deg}(\mathcal{E}) = d$.

Recall that if \mathcal{F} is a coherent sheaf on a projective scheme X with a fixed embedding $\iota: X \hookrightarrow \mathbb{P}^m$ then there exists a unique polynomial $P_{\mathcal{F}}(t)$ of degree $\leq m$ such that $P_{\mathcal{F}}(n) = \dim_{\mathbb{C}}(\Gamma(X, \mathcal{F}(n)))$ for $n \in \mathbb{Z}, n \gg 0$. This polynomial is called Hilbert polynomial of (X, ι) .

Example 2.6. For $X = \mathbb{P}^1$, \mathcal{F} a vector bundle of rank l and degree d, $\iota = \mathrm{Id}_{\mathbb{P}^1}$ we have $P_{\mathcal{F}}(t) = tl + l + d$. Indeed by Birkhoff–Grothendieck theorem every such \mathcal{F} is isomorphic to the direct sum $\mathcal{O}(m_1) \oplus \ldots \oplus \mathcal{O}(m_l)$ for some $m_i \in \mathbb{Z}$ so for $m \gg 0$ we have $\dim_{\mathbb{C}} \Gamma(\mathbb{P}^1, \mathcal{F}(m)) = (m_1 + m + 1) + \ldots + (m_l + m + 1) = lm + l + d$.

So we see that the condition that $\mathcal{E} \in \operatorname{Vect}(\mathbb{P}^1)$ has degree d and rank l can be compactly rewritten as $P_{\mathcal{E}}(t) = tl + l + d$. Note also that this approach allows us to associate rank and degree to any coherent sheaf $\mathcal{E} \in \operatorname{Coh}(\mathbb{P}^1)$. Indeed if $P_{\mathcal{E}}(t) = at + b$ then we set r(E) := a and $d(\mathcal{E}) := b - a$ and call them rank and degree respectively.

Definition 2.7. Pick a test scheme $S \in \mathbf{Sch}$ then $\mathcal{M}_d(S)$ is the set of pairs (\mathcal{E}, π) , where \mathcal{E} is a locally free sheaf (vector bundle) on $\mathbb{P}^1 \times S$ flat over S such

that $P_{\mathcal{E}|_{\mathbb{P}^1 \times s}}(t) = tl + l + d$ for any geometric point s of S, $\pi : V^* \otimes \mathcal{O}_{\mathbb{P}^1 \times S} \twoheadrightarrow \mathcal{E}$ is the surjection of vector bundles.

Theorem 2.8. The functor \mathcal{M}_d is represented by a smooth quasi-projective scheme of dimension nd + (n - l)l to be denoted by the same symbol.

To prove this theorem we define a smooth projective variety \mathcal{Q}_d together with an open embedding $\mathcal{M}_d \hookrightarrow \mathcal{Q}_d$.

Definition 2.9. Pick a test scheme $S \in \mathbf{Sch}$ then $\mathcal{Q}_d(S)$ is the set of pairs (\mathcal{E}, π) , where \mathcal{E} is a coherent sheaf on $\mathbb{P}^1 \times S$ flat over S and such that $P_{\mathcal{E}|_{\mathbb{P}^1 \times s}}(t) = tl + l + d$ for any geometric point s of $S, \pi \colon V^* \otimes \mathcal{O}_{\mathbb{P}^1 \times S} \to \mathcal{E}$ is the surjection of *sheaves*.

Note that we have the natural embedding of functors $\mathcal{M}_d \hookrightarrow \mathcal{Q}_d$. Now theorem 2.8 follows from the theorem bellow.

Theorem 2.10. Functor \mathcal{Q}_d is represented by a smooth projective scheme of dimension nd + (n-l)l and the morphism $\mathcal{M}_d \hookrightarrow \mathcal{Q}_d$ identifies \mathcal{M}_d with an open subscheme of \mathcal{Q}_d .

Proof. Follows from [Gr], see also [N].

Example 2.11. For l = 1 (i.e. $\operatorname{Gr}(l, V) = \mathbb{P}^{n-1}$) we have $\mathcal{Q}_d = \mathbb{P}^{n(d+1)-1}$. It can be easily seen at the level of \mathbb{C} -points: a point of $\mathcal{Q}_d(\operatorname{Spec} \mathbb{C})$ consists of a coherent sheaf $\mathcal{E} \in \operatorname{Coh}(\mathbb{P}^1)$ of degree d and rank 1 and a surjection of sheaves $\pi \colon V^* \otimes \mathcal{O}_{\mathbb{P}^1} \to \mathcal{E}$. Sheaf \mathcal{E} must be of the form $\mathcal{O}(d) \oplus \mathcal{F}$, where \mathcal{F} is the sum of finite number of skyscraper sheaves on \mathbb{P}^1 . There are no nonzero morphisms from $\mathcal{O}_{\mathbb{P}^1}$ to any skyscraper sheaf so we conclude that $\mathcal{F} = 0$ (otherwise there are no surjection $V^* \otimes \mathcal{O}_{\mathbb{P}^1} \to \mathcal{E}$) i.e. $\mathcal{E} = \mathcal{O}(d)$. We see that

$$\operatorname{Hom}(V^* \otimes \mathcal{O}_{\mathbb{P}^1}, \mathcal{E}) = \operatorname{Hom}(V^* \otimes \mathcal{O}_{\mathbb{P}^1}, \mathcal{O}(d)) \simeq V \otimes S^d(\mathbb{C}^{2^*})$$

and an element $f \in \text{Hom}(V^* \otimes \mathcal{O}_{\mathbb{P}^1}, \mathcal{E})$ defines a surjective morphism of sheaves iff $f \neq 0$. We conclude that $\mathcal{Q}_d = \mathbb{P}(V \otimes S^d(\mathbb{C}^{2^*})) = \mathbb{P}^{n(d+1)-1}$.

Note that by the universal property of \mathcal{Q}_d applied to $S = \mathcal{Q}_d$ and Id: $\mathcal{Q}_d \to \mathcal{Q}_d$ we obtain a universal exact sequence of sheaves on $\mathbb{P}^1 \times \mathcal{Q}_d$:

$$0 \to \mathcal{S}_d \to V^* \otimes \mathcal{O}_{\mathbb{P}^1 \times \mathcal{Q}_d} \to \mathcal{T}_d \to 0.$$

Sheaf S_d is locally free (follows from the fact that T_d is flat over Q_d). So we can consider the dual universal map

$$u: V \otimes \mathcal{O}_{\mathbb{P}^1 \times \mathcal{Q}_d} \to \mathcal{S}_d^*.$$

Now we can think about moduli space of morphisms $\mathbb{P}^1 \to \operatorname{Gr}(l, V)$ as about a smooth algebraic variety \mathcal{M}_d and we want to define algebraic varieties $\Omega_{\lambda,p}(F_{\bullet}) \subset \mathcal{M}_d$ which would parametrize morphisms $f \colon \mathbb{P}^1 \to \mathcal{M}_d$ such that $f(p) \in \Omega_{\lambda}(F_{\bullet})$, here $\lambda \in P(l \times k)$ and $p \in \mathbb{P}^1$ is some point. To do so we need to define an evaluation morphism $\operatorname{ev} \colon \mathbb{P}^1 \times \mathcal{M}_d \to \operatorname{Gr}(l, V)$.

Definition 2.12. For $S \in \mathbf{Sch}$ define a map $\operatorname{ev}(S) \colon (\mathbb{P}^1 \times \mathcal{M}_d)(S) \to \operatorname{Gr}(l, V)(S)$ as follows: note that a morphism $f \colon S \to \mathbb{P}^1 \times \mathcal{M}_d$ defines us a morphism $S \to \mathcal{M}_d$ (via the projection $\mathbb{P}^1 \times \mathcal{M}_d \to \mathcal{M}_d$) which is the same as the pair (\mathcal{E}, π) as in definition 2.7. Consider now the natural embedding $\iota_p \colon p \times S \hookrightarrow \mathbb{P}^1 \times S$ and send f to $(\iota_p^* \mathcal{E}, \iota_p^* \pi) \in \operatorname{Gr}(l, V)(S)$.

Note that directly from the definitions ev is a morphism of functors so it induces a morphism of the corresponding varieties to be denoted by the same symbol.

Example 2.13. For l = 1 we have $\operatorname{Gr}(l, V) = \mathbb{P}(V)$ and recall that $\mathcal{Q}_d = \mathbb{P}(V \otimes S^d \mathbb{C}^{2^*})$ and $\mathcal{M}_d \subset \mathbb{P}(V \otimes S^d \mathbb{C}^{2^*})$ is an open subset. Then the morphism ev: $\mathbb{P}^1 \times \mathcal{M}_d \to \mathbb{P}(V)$ is a restriction to $\mathbb{P}^1 \times \mathcal{M}_d$ of the birational morphism

$$\mathbb{P}(\mathbb{C}^2) \times \mathbb{P}(V \otimes S^d \mathbb{C}^{2^*}) \to \mathbb{P}(V)$$

induced by the map $\mathbb{C}^2 \otimes (V \otimes S^d \mathbb{C}^{2^*}) \to V, x \otimes v \otimes f \mapsto f(x)v.$

Definition 2.14. For $p \in \mathbb{P}^1$, $\lambda \in P(l \times k)$ and a flag F_{\bullet} we define $\Omega_{\lambda,p}(F_{\bullet})$ as the intersection $ev^{-1}(\Omega_{\lambda}(F_{\bullet})) \cap (p \times \mathcal{M}_d)$. It can be considered as a subscheme of \mathcal{M}_d of codimension $|\lambda|$.

Example 2.15. Assume that l = 1. Recall that for a fixed flag F_{\bullet} and $0 \leq a \leq n-1$ we have $\Omega_a(F_{\bullet}) = \mathbb{P}(F_{n-a}) \subset \mathbb{P}(V)$. It follows from the example 2.13 that for a point $p = [x : y] \in \mathbb{P}^1$ we have $\Omega_{a,p}(F_{\bullet}) = \mathbb{P}(\tilde{F}_{n-a}) \cap \mathcal{M}_d$, where the intersection is taken in $\mathbb{P}(V \otimes S^d \mathbb{C}^{2^*})$ and \tilde{F}_{n-a} is the preimage of F_{n-a} under the linear map

$$V \otimes S^d \mathbb{C}^{2^*} \to V, v \otimes f \mapsto f(x, y)v.$$

Let us now define compactifications $\Omega_{\lambda,p}(F_{\bullet})$ of the varieties $\Omega_{\lambda,p}(F_{\bullet})$ in \mathcal{Q}_d (we will then define the desired numbers $\langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle_d$ as intersection pairings of cohomology classes $\overline{\Omega}_{\lambda,p}(F_{\bullet})$ in the smooth variety \mathcal{Q}_d). For l = 1 we will just have $\overline{\Omega}_{a,p}(F_{\bullet}) = \mathbb{P}(\tilde{F}_{n-a}) \subset \mathcal{Q}_d$ (see the example 2.15 for notations).

As we already see in the case l = 1 (see example 2.13) the morphism ev: $\mathbb{P}^1 \times \mathcal{M}_d \to \operatorname{Gr}(l, V)$ does not extend to a morphism $\mathbb{P}^1 \times \mathcal{Q}_d \to \operatorname{Gr}(l, V)$ so we can not define varieties $\overline{\Omega}_{\lambda,p}(F_{\bullet}) \subset \mathcal{Q}_d$ directly in the same way as we have defined varieties $\Omega_{\lambda,p}(F_{\bullet}) \subset \mathcal{M}_d$ in definition 2.14. We will use a universal morphism $u: V \otimes \mathcal{O}_{\mathbb{P}^1 \times \mathcal{Q}_d} \to \mathcal{S}_d^*$ to define them.

Definition 2.16. For each i = 1, ..., l, let $D_{i,\lambda_i}(F_{\bullet}) \subset \mathbb{P}^1 \times \mathcal{Q}_d$ be the largest subscheme on which the dimension of the kernel of $u: F_{n-l-i+\lambda_i} \otimes \mathcal{O}_{\mathbb{P}^1 \times \mathcal{Q}_d} \to \mathcal{S}_d^*$ is at least i, and let $D_{i,\lambda_i,p}(F_{\bullet})$ be the intersection $D_{i,\lambda_i,p}(F_{\bullet}) \cap (p \times \mathcal{Q}_d)$ considered as a subscheme of \mathcal{Q}_d . Then we define

$$\overline{\Omega}_{\lambda,p}(F_{\bullet}) := D_{1,\lambda_1,p}(F_{\bullet}) \cap \ldots \cap D_{l,\lambda_l,p}(F_{\bullet}).$$

This is a subscheme of \mathcal{Q}_d of codimension $|\lambda|$.

It is clear from the definitions that $\overline{\Omega}_{\lambda,p}(F_{\bullet}) \cap \mathcal{M}_d = \Omega_{\lambda,p}(F_{\bullet}).$

Example 2.17. It follows from example 2.15 and the definitions that for l = 1 and $0 \leq a \leq n-1$ we have $\overline{\Omega}_{a,p}(F_{\bullet}) = \mathbb{P}(\tilde{F}_{n-a})$. Note also that

$$\dim \overline{\Omega}_{a,p}(F_{\bullet}) = \dim(\tilde{F}_{n-a}) - 1 = nd + \dim(F_{n-a}) = nd + n - a - 1$$

since the map

$$V \otimes S^d \mathbb{C}^{2^*} \to V, v \otimes f \mapsto f(x, y)v$$

is clearly surjective. We conclude that the codimension of $\overline{\Omega}_{a,p}(F_{\bullet})$ in \mathcal{Q}_d indeed equals to a.

Let us denote by $\overline{\sigma}_{\lambda} \in H^{|\lambda|}(\mathcal{Q}_d, \mathbb{Z})$ the cohomology class of $\overline{\Omega}_{\lambda,p}(F_{\bullet})$. We are now ready to define Gromov-Witten numbers $\langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle_d$.

Definition 2.18. For $\lambda_1, \ldots, \lambda_N \in P(l \times k)$ let $\langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle_d$ be zero if $|\lambda_1| + |\lambda_2| + \ldots + |\lambda_l| \neq \dim \mathcal{M}_d = nd + (n-l)l$. Otherwise we define $\langle \Omega_{\lambda_1}, \ldots, \Omega_{\lambda_N} \rangle_d$ as the intersection pairing of the cohomology classes $\overline{\sigma}_{\lambda_i} \in H^*(\mathcal{Q}_d, \mathbb{C})$.

Example 2.19. Assume l = 1 then $\lambda_1, \ldots, \lambda_N$ are just some numbers a_1, \ldots, a_N such that $0 \leq a_i \leq n-1$. Let us now compute the numbers $\langle \Omega_{a_1}, \ldots, \Omega_{a_N} \rangle_d$. We assume that $a_1 + \ldots + a_N = n(d+1) - 1$ (otherwise this number is zero by the definition). It follows from example 2.11 that $\mathcal{Q}_d = \mathbb{P}(V \otimes S^d \mathbb{C}^{2^*}) =$ $\mathbb{P}^{n(d+1)-1}$ so we have an isomorphism $H^*(\mathcal{Q}_d, \mathbb{Z}) \simeq \mathbb{Z}[t]/t^{n(d+1)}$ and by example 2.17 we have $\overline{\Omega}_{p,a}(F_{\bullet}) = \mathbb{P}(\tilde{F}_{n-a_i})$ for certain subspace $\tilde{F}_{n-a_i} \subset V \otimes S^d \mathbb{C}^{2^*}$ of codimension a_i so we have $\overline{\sigma}_{a_i} = t^{a_i}$. We conclude that $\langle \Omega_{a_1}, \ldots, \Omega_{a_N} \rangle_d =$ 1.

2.1 Small quantum cohomology ring

We can now define the small quantum cohomology ring $QH^*(\operatorname{Gr}(l, V), \mathbb{Z}) := H^*(\operatorname{Gr}(l, V), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}[q]$ and set $\tilde{\sigma}_{\lambda} := \sigma_{\lambda} \otimes 1$. The ring structure on $QH^*(\operatorname{Gr}(l, V), \mathbb{Z})$ is defined by

$$\tilde{\sigma}_{\lambda} \cdot \tilde{\sigma}_{\mu} := \sum_{\nu, d \ge 0} \langle \Omega_{\lambda}, \Omega_{\mu}, \Omega_{\nu^{t}} \rangle_{d} q^{d} \tilde{\sigma}_{\nu}.$$

It is a nontrivial fact that \cdot defines an associative ring structure.

Example 2.20. Consider the case l = 1. In this case λ, μ, ν are just numbers $0 \leq a, b, c \leq n-1$ and it follows from example 2.19 that $\langle \Omega_a, \Omega_b, \Omega_{n-1-c} \rangle_d = 0$ if $a+b+n-c \neq n(d+1)$ and is 1 otherwise. We conculde that $QH^*(\operatorname{Gr}(l,V),\mathbb{Z})$ is isomorphic to $\mathbb{Z}[t,q]/(t^n-q)$ via the map $\sigma_a \mapsto t^a$. Note that for q = 0 we obtain the cohomology ring of \mathbb{P}^{n-1} .

In the example below we have explicitly described the ring $QH^*(\operatorname{Gr}(l, V), \mathbb{Z})$ for l = 1. The goal of the next sections is to generalize this result to the case of arbitrary l.

3 Main tools

We start from the following definition.

Definition 3.1. If A is a subset of $\operatorname{Gr}(l, V)$ then we define Span A to be the sum $\sum_{W \in A} W$. We also define ker A as the intersection $\bigcap_{W \in A} W$.

Example 3.2. For $A = \{W\} \in \operatorname{Gr}(l, V)$ we have $\operatorname{Span} A = \ker A = W \subset V$. For $A = \operatorname{Gr}(l, V)$ we have $\operatorname{Span} A = V$, $\ker A = 0$. Remark 3.3. Note that for a fixed subspace $F \subset V$ and a subvariety $A \subset$ Gr(l, V) we have Span $A \subset F$ (resp. $F \subset \ker A$) iff $A \subset \operatorname{Gr}(l, K)$ (resp. $A \subset$ Gr $(l - \dim K, V/K) \subset \operatorname{Gr}(l, V)$). Note also that if $i: \operatorname{Gr}(l, V) \xrightarrow{\sim} \operatorname{Gr}(n - l, V^*), W \mapsto \operatorname{Ann} W$ is the natural identification. Then

 $\operatorname{Span} i(A) = \operatorname{Ann}(\ker A), \ker A = \operatorname{Ann}(\operatorname{Span} A).$

Lemma 3.4. Let C be a rational curve of degree d in X. Then Span C has dimension at most l + d and ker C has dimension at least l - d.

Proof. Curve C is an image of a regular function $f: \mathbb{P}^1 \to X$ of degree d. By proposition 2.5 this map corresponds to $\mathcal{E} = f^*(\mathcal{U}) \subset V \otimes \mathcal{O}_{\mathbb{P}^1}$, $\varphi := f^*(\mathcal{U} \hookrightarrow V \otimes \mathcal{O}_{\mathbb{P}^1})$. Point $p \in \mathbb{P}^1$ goes to $\mathcal{E}_p \subset V \in X$. Condition that deg f = d corresponds to deg $\mathcal{E} = -d$. Therefore $\mathcal{E} = \bigoplus_{i=1}^l \mathcal{O}_{\mathbb{P}^1}(-a_i)$, where $a_i \ge 0$, $\sum_{i=1}^l a_i = d$. Each map $V^* \otimes \mathcal{O}_{\mathbb{P}^1} \to \mathcal{O}_{\mathbb{P}^1}(a)$ is defined by map on global sections $\phi: V^* \to \Gamma(\mathcal{O}_{\mathbb{P}^1}(a))$. Taking duals we see that map $\mathcal{O}_{\mathbb{P}^1}(-a) \to V \otimes \mathcal{O}_{\mathbb{P}^1}$ is given by map $\phi^*: \Gamma(\mathcal{O}_{\mathbb{P}^1}(a))^* \to V$. Hence map from \mathcal{E} to $V \otimes \mathcal{O}_{\mathbb{P}^1}$ is given by $\phi_1^*, \ldots, \phi_l^*$. It is easy to see that for any $p \in \mathbb{P}^1$ its image is $L = \operatorname{Span}(v_1, \ldots, v_l)$ where $v_i \in \operatorname{Im} \phi_i^*$. Therefore span of C is contained in $\cup \operatorname{Im} \phi_i^*$, so it has dimension at most

$$\sum \dim \phi_i^* \leqslant \sum \dim \Gamma(\mathcal{O}_{\mathbb{P}^1}(a_i)) = \sum (1+a_i) = l+d$$

On the other hand at least l - d of a_i equal to 0. In this case $a_i = 0$ we have $\operatorname{Im} \phi_i^* = 1$. So any L contains $\operatorname{Im} \phi_i^*$ for this i. We deduce that kernel of C has dimension at least l - d.

If λ is a partition and d is a nonnegative integer we define λ to be the partition obtained by removing the leftmost d columns from the Young diagram of d, i.e. $\hat{\lambda}_i = \max(\lambda_i - d, 0)$.

Lemma 3.5. Let $C \subset X$ be a rational curve of degree $d \leq k$ and let $E \subset V$ be an l+d dimensional subspace containing the span of C. If λ is a partition such that $C \cap \Omega_{\lambda}(F_{\bullet}) \neq \emptyset$ then W belongs to the Schubert variety $\Omega_{\hat{\lambda}}(F_{\bullet})$ in $\operatorname{Gr}(l+d,V)$.

Proof. Recall that the Schubert variety $\Omega_{\lambda}(F_{\bullet})$ is defined as

$$\{W \in X \mid \dim(W \cap F_{k+i-\lambda_i}) \ge i \ \forall \ 1 \le i \le l\}.$$

Let $W \in C \cap \Omega_{\lambda}(F_{\bullet})$. By definition $W \subset E$. Hence $\dim(E \cap F_{k+i-\lambda_i}) \geq \dim(W \cap F_{k+i-\lambda_i}) \geq i$ for all $1 \leq i \leq l$. On the other hand $F_{k-d+i-\lambda_i} = F_{\min(k+i-\lambda_i,k-d+i)}$. Intersection of l+d dimensional subspace E with k-d+i dimensional subspace F_{k-d+i} has dimension at least i. Therefore $\dim(E \cap F_{k-d+i-\lambda_i}) \geq i$. We deduce that E belongs to $\Omega_{\lambda}(F_{\bullet})$.

Corollary 3.6. If $\Omega_{\hat{\lambda}} \cap \Omega_{\hat{\mu}} \cap \Omega_{\hat{\nu}} = \emptyset$ then $\langle \Omega_{\lambda}, \Omega_{\mu}, \Omega_{\nu} \rangle_d = 0$.

This corollary allows us to deduce statements about the quantum cohomology from statements about the usual cohomology.

Recall that for a partition λ we denote by $\ell(\lambda)$ the number of nonzero rows of λ . The following lemma is very useful.

Lemma 3.7. Let λ and μ be partitions contained in $l \times k$ rectangle such that $l(\lambda) + l(\mu) \leq l$. Then

$$\tilde{\sigma}_{\lambda} \cdot \tilde{\sigma}_{\mu} = (\sigma_{\lambda} \cdot \sigma_{\mu}) \otimes 1$$

Proof. Suppose that $d \ge 1$ and ν is a partition such that $|\lambda| + |\mu| + |\nu| = lk + nd$. Then we have

$$|\hat{\lambda}| + |\hat{\mu}| + |\hat{\nu}| \geqslant |\lambda| + |\mu| + |\nu| - 2ld = lk + nd - 2ld = lk + kd - ld > (l+d)(k-d)$$

It follows that for general flags F_{\bullet} , G_{\bullet} , H_{\bullet} we have $\Omega_{\hat{\lambda}}(F_{\bullet}) \cap \Omega_{\hat{\mu}}(G_{\bullet}) \cap \Omega_{\hat{\nu}}(H_{\bullet}) = \emptyset$. Using Corollary 3.6 we get $\langle \Omega_{\lambda}, \Omega_{\mu}, \Omega_{\nu} \rangle_d = 0$. The lemma follows.

4 Quantum Pieri and Giambelli formulas

Using the results of section 3 we are ready to formulate and prove quantum versions of Pieri and Giambelli formulas.

4.1 Quantum Pieri

We start from the following lemma. Recall that the number $\langle \Omega_{\alpha}, \Omega_{\beta}, \Omega_i \rangle_d$ is nonzero only if $|\alpha| + |\beta| + p = l(n-l) + dn$.

Lemma 4.1. For $d \ge 1$ let $\alpha, \beta \in P(l \times k), 1 \le p \le n-l$ be such that $|\alpha| + |\beta| + p = l(n-l) + dn$. Then we have

$$\langle \Omega_{\alpha}, \Omega_{\beta}, \Omega_{p} \rangle_{d} = \begin{cases} \langle \Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{p}} \rangle_{0} & \text{for } d = 1 \text{ and } \ell(\alpha) = \ell(\beta) = l, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Let C be a rational curve of degree d in $\operatorname{Gr}(l, V)$ which intersects with each of the varieties $\Omega_{\alpha}(F_{\bullet})$, $\Omega_{\beta}(G_{\bullet})$, $\Omega_{p}(H_{\bullet})$ for generic flags $F_{\bullet}, G_{\bullet}, H_{\bullet}$. It follows from lemma 3.4 that there exists $E \subset V$ of dimension l + d such that $\operatorname{Span} C \subset E$. By lemma 3.5 we must have $E \in \Omega_{\hat{\alpha}}(F_{\bullet}) \cap \Omega_{\hat{\beta}}(G_{\bullet}) \cap \Omega_{\hat{p}}(H_{\bullet})$ and in particular $\Omega_{\hat{\alpha}}(F_{\bullet}) \cap \Omega_{\hat{\beta}}(G_{\bullet}) \cap \Omega_{\hat{p}}(H_{\bullet}) \neq \emptyset$. Recall that the codimensions of $\Omega_{\hat{\alpha}}(F_{\bullet}), \Omega_{\hat{\beta}}(G_{\bullet}), \Omega_{\hat{p}}(H_{\bullet}) \subset \operatorname{Gr}(l + d, V)$ are $|\hat{\alpha}|, |\hat{\beta}|, |\hat{p}|$ respectively and $\operatorname{dim} \operatorname{Gr}(l + d, E) = (l + d)(n - l - d)$. We conclude that

$$|\hat{\alpha}| + |\hat{\beta}| + \hat{p} \leqslant (l+d)(n-l-d). \tag{1}$$

Note also that α, β lie in an $l \times (n-l)$ rectangle so directly from the definitions we have $|\hat{\alpha}| \ge |\alpha| - ld, |\hat{\beta}| \ge |\beta| - ld$. We also have $\hat{p} = \max(p-d, 0) \ge p-d$. Altogether we obtain

$$|\hat{\alpha}| + |\hat{\beta}| + \hat{p} \ge |\alpha| + |\beta| - 2ld + p - d = (l+d)(n-l-d) + d^2 - d.$$
(2)

We conclude from (1) and (2) that $0 \ge d^2 - d$, hence, we must have d = 1 and moreover $\ell(\alpha) = \ell(\beta) = l$, $|\hat{\alpha}| + |\hat{\beta}| + \hat{p} = (l+1)(n-l-1)$. So we have shown that $\langle \Omega_{\alpha}, \Omega_{\beta}, \Omega_i \rangle_d = 0$ for d > 1 or if $\ell(\alpha) \ne l$ or $\ell(\beta) \ne l$. Assume that d = 1and note that $\langle \Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{\beta}} \rangle_0$ is nonzero only if $|\hat{\alpha}| + |\hat{\beta}| + \hat{p} = (l+d)(n-l-d)$. We now conclude from (2) that $\langle \Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{\beta}} \rangle_0 = 0$ if $\ell(\alpha) \ne l$ or $\ell(\beta) \ne 0$.

Let us now assume that d = 1 and $\ell(\alpha) = \ell(\beta) = l$, hence, $\hat{\alpha}_i = \alpha_i - 1$, $\hat{\beta}_i = \beta_i - 1$ for all i = 1, 2, ..., l. Recall that our goal is to show that $\langle \Omega_{\alpha}, \Omega_{\beta}, \Omega_{p} \rangle_1 = \langle \Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{p}} \rangle_0$. Recall that by proposition 1.4 we have either $\langle \Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{\beta}} \rangle_0 = 0$ or $\langle \Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{i}} \rangle_0 = 1$.

Case 1: If $\langle \Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{p}} \rangle_0 = 0$ then we must have $\langle \Omega_{\alpha}, \Omega_{\beta}, \Omega_i \rangle_1 = 0$ since otherwise there exists a curve C of degree 1 in $\operatorname{Gr}(l, V)$ which intersects with each of the varieties $\Omega_{\alpha}(F_{\bullet}), \Omega_{\beta}(G_{\bullet}), \Omega_i(H_{\bullet})$ for generic flags $F_{\bullet}, G_{\bullet}, H_{\bullet}$. It then follows from lemma 3.5 that $\operatorname{Span} C \subset \Omega_{\hat{\alpha}} \cap \Omega_{\hat{\beta}} \cap \Omega_{\hat{i}}$ and this contradicts to the fact that $\langle \Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{i}} \rangle_0 = 0$.

Case 2: If $\langle \Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{i}} \rangle_0 = 1$ then there exists a unique $W \subset V$ of dimension l + 1 such that $W \in \Omega_{\hat{\alpha}}(F_{\bullet}) \cap \Omega_{\hat{\beta}}(G_{\bullet}) \cap \Omega_{\hat{i}}(H_{\bullet})$. If C is a rational curve of degree 1 in $\operatorname{Gr}(l, V)$ wich intersects with each of the varieties $\Omega_{\alpha}(F_{\bullet}), \Omega_{\beta}(G_{\bullet}), \Omega_{i}(H_{\bullet})$ then by lemma 3.5 we must have $\operatorname{Span} C = W$ so

$$C \subset \operatorname{Gr}(l, W) \subset \operatorname{Gr}(l, V).$$
(3)

Recall now that $W \in \Omega_{\hat{\alpha}}(F_{\bullet}) \cap \Omega_{\hat{\beta}}(G_{\bullet}) \cap \Omega_{\hat{i}}(H_{\bullet})$ and flags $F_{\bullet}, G_{\bullet}, H_{\bullet}$ are generic so W must lie in the interiors of Schubert varieties above i.e.

$$\dim(W \cap F_{n-l-1+i-\hat{\alpha}_i}) = \dim(W \cap G_{n-l-1+i-\hat{\beta}_i}) = i$$

Recall that $\hat{\alpha}_i = \alpha_i - 1$, $\hat{\beta}_i = \beta_i - 1$ so we conclude that

$$\dim(W \cap F_{k+i-\alpha_i}) = \dim(W \cap F_{k+i-\beta_i}) = i \ \forall \ i = 1, 2, \dots, l.$$

$$(4)$$

In particular we obtain $\dim(W \cap F_{n-\alpha_l}) = \dim(W \cap G_{n-\beta_l}) = l$. Set $V_1 := W \cap F_{n-\alpha_l}, V_2 := W \cap G_{n-\beta_l}$. It follows from (4) that $V_1 \in \Omega_{\alpha}(F_{\bullet}), V_2 \in \Omega_{\beta}(G_{\bullet})$. Note also that codimensions of $\Omega_{\alpha}(F_{\bullet}), \Omega_{\beta}(G_{\bullet})$ in $\operatorname{Gr}(l, V)$ are $|\alpha|, |\beta|$ respectively and $|\alpha| + |\beta| = \dim \operatorname{Gr}(l, V) + n - p > \dim \operatorname{Gr}(l, V)$ so we must have $\Omega_{\alpha} \cap \Omega_{\beta} = \emptyset$ for generic F_{\bullet}, G_{\bullet} . It follows that $V_1 \neq V_2$ so $\dim(V_1 \cap V_2) \leq l-1$. Recall also that $V_1, V_2 \subset W$ and $\dim W = l+1$ so we must have $\dim(V_1 \cap V_2) \geq l-1$. We conclude that $S := V_1 \cap V_2$ has dimension l-1.

Let us return now to our C. Pick $V'_1 \in C \cap \Omega_{\alpha}(F_{\bullet}), V'_2 \in C \cap \Omega_{\beta}(G_{\bullet})$. By the definitions we have $V'_1, V'_2 \subset \text{Span } C = W$. On the other hand by the definitions $V_1 \subset F_{n-\alpha_l}, V'_2 \subset G_{n-\beta_l}$. We conclude that $V'_1 \subset W \cap F_{n-\alpha_l}, V'_2 \subset W \cap G_{n-\beta_l}$ so we must have $V'_1 = V_1, V_2 = V'_2$ because of the dimension estimates. It follows that $S \subset \ker C$ but both these varieties have dimension l-1 so we conclude that $S = \ker C$. It now follows from the equalities $S = \ker C, W = \text{Span } C$ that $C \subset \mathbb{P}(W/S)$, hence, $C = \mathbb{P}(W/S)$ since C is projective of dimension 1 and $\mathbb{P}(W/S) \simeq \mathbb{P}^1$. So we have shown that $\langle \Omega_{\alpha}, \Omega_{\beta}, \Omega_p \rangle_1 \leq 1$. To show that $\langle \Omega_{\alpha}, \Omega_{\beta}, \Omega_p \rangle_1 = 1$ It remains to check that $\mathbb{P}(W/S) \subset \text{Gr}(l, V)$ intersects with $\Omega_{\alpha}(F_{\bullet}), \Omega_{\beta}(G_{\bullet}), \Omega_p(H_{\bullet})$. Note that $V_1 \in \mathbb{P}(W/S) \cap \Omega_{\alpha}(F_{\bullet}), V_2 \in \mathbb{P}(W/S) \cap \Omega_{\beta}(G_{\bullet})$. Let us denote by $V_3 \subset W$ any subspace of dimension l which contains S and $W \cap H_{n-l-p+1}$. By the definition $S \subset V_3 \subset W$ so $V_3 \in \mathbb{P}(W/S)$. Note also that $V_3 \in \Omega_p(H_{\bullet})$ since $V_3 \cap H_{n-l+1-p} \supset W \cap H_{n-l+1-p}$ and the latter has dimension 1. We conclude that $V_3 \in \mathbb{P}(W/S) \cap \Omega_p(H_{\bullet})$ and the claim follows.

Theorem 4.2. Pick $\lambda \in P(l \times k)$ and $0 \leq p \leq n - l$. Then we have

$$\sigma_p \cdot \sigma_{\lambda} = \sum_{\substack{\mu, |\mu| = |\lambda| + p \\ n - l \geqslant \mu_i \geqslant \lambda_i \geqslant \mu_{i+1}}} \sigma_{\mu} + q \sum_{\substack{\nu, |\nu| = |\lambda| + p - n \\ \lambda_i - 1 \geqslant \nu_i \geqslant \lambda_{i+1} - 1 \geqslant 0}} \sigma_{\nu}.$$
(5)

Proof. Directly follows from the classical Pieri formula (see proposition 1.4) and lemma 4.1. \Box

Remark 4.3. Note that the first sum in (5) is taken over all μ that can be obtained from λ by adding p boxes with no two in the same column and the

second sum is zero if $\ell(\lambda) < l$ and otherwise is taken over all ν such that ν that can be obtained from $(\lambda_1 - 1, \ldots, \lambda_l - 1)$ by adding l + p - n boxes with no two in the same column.

4.2 Quantum Giambelli

We can now prove the quantum version of the Giambelli theorem.

Theorem 4.4 ([Be]). If λ is a partition contained in $l \times k$ rectangle then the Schubert class $\tilde{\sigma}_{\lambda}$ in $QH^* \operatorname{Gr}(l, V)$ is given by $\tilde{\sigma}_{\lambda} = \operatorname{det}(\tilde{\sigma}_{\lambda_i+j-i})$, where $\tilde{\sigma}_i = 0$ for i < 0 or i > k.

Proof. Let us prove that if $0 \leq i_j \leq k$ for $1 \leq j \leq l$ then $\tilde{\sigma}_{i_1} \cdot \tilde{\sigma}_{i_2} \cdots \tilde{\sigma}_{i_l} = (\sigma_{i_1} \cdot \sigma_{i_2} \cdots \sigma_{i_l}) \otimes 1$, i.e. no *q*-terms show up when the first product is expanded in the quantum ring. Using theorem 4.2 we easily prove by induction on *j* that the expansion of $\tilde{\sigma}_{i_1} \cdot \tilde{\sigma}_{i_2} \cdots \tilde{\sigma}_{i_j}$ involves no *q*-terms and no partitions of length greater than *j*.

Another proof of this uses lemma 3.7 and the fact that expansion of $\sigma_{\lambda} \cdot \sigma_{\mu}$ contains no terms of length greater than $l(\lambda) + l(\mu)$. This fact follows from Littlewood-Richardson rule. Here we need this fact only for $\mu = (p) = (p, 0, 0, \dots, 0)$, so it follows from the usual Pieri rule.

Since det $(\tilde{\sigma}_{\lambda_i+j-i}) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n \tilde{\sigma}_{\lambda_i+\pi(i)-i}$ we deduce that

$$\det(\tilde{\sigma}_{\lambda_i+j-i}) = \det(\sigma_{\lambda_i+j-i}) \otimes 1 = \sigma_{\lambda} \otimes 1 = \tilde{\sigma}_{\lambda}$$

5 Presentation via generators and relations

Let $A := QH^*(X, \mathbb{Z})$. We define $c_i \in A$ as $c_i = \tilde{\sigma}_{1^i}$. For $p \ge 1$ we define $\tilde{\sigma}_p = \det(c_{1+j-i})_{1 \le i,j \le p}$. For p < n using Lemma 3.7 or Theorem 4.2 we have $\tilde{\sigma}_p = \sigma_p \otimes 1$. Hence this definition agrees with previous definition of $\tilde{\sigma}_p$. Using this definition of $\tilde{\sigma}_p$ and first row decomposition of determinant we get

$$\sum_{i=1}^{l} (-1)^i \tilde{\sigma}_{m-i} c_i = 0 \tag{6}$$

Lemma 5.1. We have $\tilde{\sigma}_n = (-1)^{l-1}q$.

Proof. Using quantum Pieri and (6) we get

$$\tilde{\sigma}_n = (-1)^{l-1} \tilde{\sigma}_k \tilde{\sigma}_{1^l} = (-1)^{l-1} q.$$

_	 	

Proposition 5.2. We have an isomorphism of \mathbb{Z} -algebras

 $H^*(Gr(l,V),\mathbb{Z}) \cong \mathbb{Z}[x_1,\ldots,x_l,q]/(y_{k+1},\ldots,y_{n-1},y_n+(-1)^l q)$

given by $c_i \mapsto x_i$, here $y_p := \det(x_{1+j-i})_{1 \le i,j \le p}$.

Proof. Let

$$B := \mathbb{Z}[x_1, \dots, x_l, q] / (y_{k+1}, \dots, y_{n-1}, y_n + (-1)^l q)$$

where $\sigma_p = \det(c_{1+j-i})_{1 \le i,j \le p}$. Using lemma 5.1 we get well-defined map $\phi: B \to A, \ \phi(x_i) = c_i$. Ring A is a free $\mathbb{Z}[q]$ -module. A standard algebraic lemma says that a map $\psi: M \to N$ of $\mathbb{Z}[q]$ -modules with N free is an isomorphism if and only if induced map $\psi': M/qM \to N/qN$ is an isomorphism. Hence it is enough to prove that $\phi': B/qB \to A/qA$ is an isomorphism. We have $B/qB = \mathbb{Z}[x_1, \ldots, x_l]/(y_{k+1}, \ldots, y_n), \ A/qA = H^*(X, \mathbb{Z}), \ \phi'(x_i) = c_i$. Using presentation of $H^*(X)$ via generators and relations (theorem 1.8) we deduce that ϕ' is an isomorphism.

References

- [Be] A. Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), 289-305.
- [Bu] A. S. Buch, Quantum cohomology of Grassmannians.
- [Gr] A. Grothendieck, Thechniques de construction et téoremes d'existence en geometrie algebrique IV: Les schemas de Hilbert, Séminaire Bourbaki 221 (1960/1961).
- [N] N. Nitsure, construction of Hilbert and quot schemes.