Quantum cohomology of Grassmannians

Daniil Kliuev and Vasily Krylov

September 2, 2023

Abstract

We recall definition of (small) quantum cohomology of Grassmannians following [Be], give technical details and then give elementary proofs of the main theorems about the quantum cohomology of Grassmannians following Buch's paper ([Bu]). Namely, we prove quantum Giambelli and quantum Pieri formulas and the presentation of quantum cohomology ring.

1 Recollections on cohomologies of Grassmanninans

1.1 Main definitions

Let us fix some notations. Pick $l, n \in \mathbb{Z}_{\geqslant 0}, l \leqslant n$ and let V be a vector space of dimension n over complex numbers. We denote by $\operatorname{Gr}(l, V)$ the Grassmanian parametrizing l-dimensional subspaces $W \subset V$. We denote by $\iota: \operatorname{Gr}(l, V) \hookrightarrow \mathbb{P}\left(\Lambda^{l}(V)\right)$ the Plüker embedding which sends $W \subset V$ to $\Lambda^{l}(W) \in \mathbb{P}\left(\Lambda^{l}(V)\right)$. One can show that $\operatorname{Gr}(l, V)$ is a complex projective algebraic variety of dimension $l k$, here $k:=n-l$.

Note that we have the natural left action $\operatorname{GL}(V) \curvearrowright \operatorname{Gr}(l, V)$: element $g \in \operatorname{GL}(V)$ sends $W \in \operatorname{Gr}(l, V)$ to $g(W) \in \operatorname{Gr}(l, V)$. It is clear that this action is transitive. Let us fix any point $U \in \operatorname{Gr}(l, V)$ and denote by $P \subset \mathrm{GL}(V)$ the stabilizer of U. Then we have the natural identification $G / P \xrightarrow{\sim} \operatorname{Gr}(l, V), g \mapsto g(U)$ which we will use later to define the tautological bundle on $\operatorname{Gr}(l, V)$.

Let us denote by $P(l \times k)$ the set of l-tuples of integers $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ such that $k \geqslant \lambda_{1} \geqslant \ldots \geqslant \lambda_{l} \geqslant 0$. Note that $P(l \times k)$ is nothing else but the set of partitions which lie in the rectangle $l \times k$. For a flag F_{\bullet} and $\lambda \in P(l \times k)$ we define the Schubert cell $\Omega_{\lambda}^{\circ}\left(F_{\bullet}\right) \subset \operatorname{Gr}(l, V)$ as follows:

$$
\Omega_{\lambda}^{\circ}\left(F_{\bullet}\right):=\left\{W \in \operatorname{Gr}(l, V) \mid \operatorname{dim}\left(W \cap F_{k-i+\lambda_{i}}\right)=i \forall i=1, \ldots, l\right\} .
$$

Schubert cell $\Omega_{\lambda}^{\circ}\left(F_{\bullet}\right)$ has codimension $|\lambda|$ in $\operatorname{Gr}(l, V)$, and is isomorphic to $\mathbb{A}^{l k-|\lambda|}$. We have a disjoint decomposition

$$
\operatorname{Gr}(l, V)=\bigsqcup_{\lambda \in P(l \times k)} \Omega_{\lambda}^{\circ}\left(F_{\bullet}\right)
$$

To each $\lambda \in P(l \times k)$ we can also associate a Schubert variety which can be defined as follows:

$$
\Omega_{\lambda}\left(F_{\bullet}\right):=\left\{W \in \operatorname{Gr}(l, V) \mid \operatorname{dim}\left(W \cap F_{k-i+\lambda_{i}}\right) \geqslant i \forall i=1, \ldots, l\right\} .
$$

Varieties $\Omega_{\lambda}\left(F_{\bullet}\right)$ are closed subvarieties of $\operatorname{Gr}(l, V)$ of codimension $|\lambda|$, we can also describe $\Omega_{\lambda}\left(F_{\bullet}\right)$ as the Zariski closure of $\Omega_{\lambda}^{\circ}\left(F_{\bullet}\right)$.

Example 1.1. For $l=1$ we have $\operatorname{Gr}(l, V)=\mathbb{P}^{n-1}$ and Schubert varieties are parametrized by numbers $0 \leqslant a \leqslant n-1$. Schubert variety corresponding to $0 \leqslant a \leqslant n-1$ and a flag F_{\bullet} is precisely $\mathbb{P}\left(F_{n-a}\right) \subset \mathbb{P}(V)$.

For $\lambda \in P(l \times k)$ we denote by $\sigma_{\lambda} \in H^{2|\lambda|}(\operatorname{Gr}(l, V), \mathbb{Z})$ the cohomology class of $\Omega_{\lambda}\left(F_{\bullet}\right)$ (note that it does not depend on F_{\bullet} since for any two flags $F_{\bullet}, F_{\bullet}^{\prime}$ there exists $g \in \mathrm{GL}(V)$ such that $g\left(F_{\bullet}\right)=F_{\bullet}^{\prime}$ so $g\left(\Omega_{\lambda}\left(F_{\bullet}\right)\right)=\Omega_{\lambda}\left(F_{\bullet}^{\prime}\right)$ and now it remains to note that $\mathrm{GL}(V)$ is connected). For $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in$ $P(l \times k)$ we denote by $\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle \in \mathbb{Z}$ the intersection pairing of these subvarieties of $\operatorname{Gr}(l, V)$ (which is by the definition zero if $\left|\lambda_{1}\right|+\ldots+\left|\lambda_{N}\right| \neq$ $\operatorname{dim} \operatorname{Gr}(l, V)=l k)$.

For a partition $\lambda \in P(l \times k)$ we denote by λ^{c} the following partition: $\lambda^{c}=\left(k-\lambda_{l}, k-\lambda_{l-1}, \ldots, k-\alpha_{1}\right)$. The following proposition is standard.

Proposition 1.2. For $\lambda, \mu \in P(l \times k)$ we have

$$
\left\langle\Omega_{\lambda}, \Omega_{\mu}\right\rangle=\left\{\begin{array}{l}
1 \text { if } \lambda=\mu^{c} \\
0 \text { otherwise }
\end{array}\right.
$$

Corollary 1.3. For any $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in P(l \times k)$ we have

$$
\sigma_{\lambda_{1}} \cdot \ldots \cdot \sigma_{\lambda_{N}}=\sum_{\mu}\left\langle\Omega_{\mu^{c}}, \Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle \sigma_{\mu} .
$$

Proof. We can write $\sigma_{\lambda_{1}} \cdot \ldots \cdot \sigma_{\lambda_{N}}=\sum_{\mu} c_{\mu} \sigma_{\mu}$ for some $c_{\mu} \in \mathbb{Z}$. It follows from proposition 1.2 that $\sigma_{\mu^{c}} \cdot \sigma_{\lambda_{1}} \cdot \ldots \cdot \sigma_{\lambda_{N}}=c_{\mu} \sigma_{\mu^{c}} \cdot \sigma_{\mu}$. It again follows from proposition 1.2 and definitions that

$$
\sigma_{\mu^{c}} \cdot \sigma_{\lambda_{1}} \cdot \ldots \cdot \sigma_{\lambda_{N}}=\left\langle\Omega_{\mu^{c}}, \Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle \sigma_{\mu^{c}} \cdot \sigma_{\mu}
$$

and the claim follows.

1.2 Pieri and Giambelli formulas

To $1 \geqslant p \geqslant k$ we can associate a partition $(p, 0,0, \ldots, 0) \in P(l \times k)$ and denote by Ω_{p} the corresponding Schubert variety.

1.2.1 Pieri formula

Proposition 1.4. We have $\sigma_{p} \cdot \sigma_{\alpha}=\sum_{\beta} \sigma_{\beta}$, where the sum is taken over all β that can be obtained by adding i boxes to α with no two in the same column.

Remark 1.5. Note that the Pieri formula is equivalent to the following statement about intersection pairing of Schubert varieties. If $\alpha, \beta \in P(l \times k), 0 \leqslant$ $p \leqslant k$ are such that $|\alpha|+|\beta|+p=\operatorname{dim} \operatorname{Gr}(l, V)=l(n-l)$ then

$$
\left\langle\Omega_{\alpha}, \Omega_{\beta}, \Omega_{p}\right\rangle=\left\{\begin{array}{l}
1 \text { if } \alpha_{i}+\beta_{l-i} \geqslant n-l \text { and } \alpha_{i}+\beta_{l+1-i} \leqslant n-l \\
0, \text { otherwise } .
\end{array}\right.
$$

Indeed recall that

$$
\sigma_{p} \cdot \sigma_{\alpha}=\sum_{\beta}\left\langle\Omega_{\alpha}, \Omega_{\beta^{c}}, \Omega_{p}\right\rangle \sigma_{\beta}
$$

Note now that β can be obtained by adding p boxes to α with no two in the same column iff $\beta_{i} \geqslant \alpha_{i}$ for every $i=1,2, \ldots, l$ and $\alpha_{i} \geqslant \beta_{i+1}$ for $i=1,2, \ldots, l-1$. Recall now that $\beta_{i}^{c}=n-l-\beta_{l+1-i}$ i.e. $\beta_{i}=n-l-\beta_{l+1-i}^{c}$ for every $i=1,2, \ldots, l$. We conclude that the conditions $\beta_{i} \geqslant \alpha_{i}, \alpha_{i} \geqslant \beta_{i+1}$ are equivalent to $n-l-\beta_{l+1-i}^{c} \geqslant \alpha_{i}, \alpha_{i} \geqslant n-l-\beta_{l-i}^{c}$ i.e. $n-l \geqslant \alpha_{i}+$ $\beta_{l+1-i}^{c}, \alpha_{i}+\beta_{l-i}^{c} \geqslant n-l$ respectively and the claim follows.

1.2.2 Giambelli formula

Let us now recall the classical Giambelli formula which allows to compute Schubert classes σ_{λ} in terms of Schubert classes $\sigma_{a}, 0 \leqslant a \leqslant k$.

Theorem 1.6. If λ is a partition contained in $l \times k$ rectangle then the Schubert class σ_{λ} in $H^{*}(\operatorname{Gr}(l, V), \mathbb{Z})$ is given by $\sigma_{\lambda}=\operatorname{det}\left(\sigma_{\lambda_{i}+j-i}\right)$, where $\sigma_{i}=0$ for $i<0$ or $i>k$.

Corollary 1.7. $\operatorname{Ring} H^{*}(\operatorname{Gr}(l, V), \mathbb{Z})$ is generated (as an algebra over \mathbb{Z}) by Schubert classes $\sigma_{a}, 0 \leqslant a \leqslant k$.

1.3 Representation via generators and relations

We finish this section by recalling theorem which describes the ring $H^{*}(\operatorname{Gr}(l, V), \mathbb{Z})$ explicitly (using generators and relations).

Theorem 1.8. We have an isomorphism

$$
H^{*}(\operatorname{Gr}(l, V), \mathbb{Z}) \cong \mathbb{Z}\left[x_{1}, \ldots, x_{l}, q\right] /\left(y_{k+1}, \ldots, y_{n-1}, y_{n}\right)
$$

where $y_{p}:=\operatorname{det}\left(c_{1+j-i}\right)_{1 \leq i, j \leq p}$. Element x_{i} corresponds to the i th Chern class of the dual of the tautological bundle on $\operatorname{Gr}(l, V)$.

2 Moduli spaces of rational curves and quantum cohomology

We fix a flag F_{\bullet}. Recall that $X=\operatorname{Gr}(l, W)$ is covered by Schubert cells $\Omega_{\lambda}^{\circ}\left(F_{\bullet}\right)$, where λ runs through partitions $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ such that $n-l \geqslant$ $\lambda_{1} \geqslant \ldots \geqslant \lambda_{l} \geqslant 0$, recall that we denote the set of such partitions by $P(l \times k)$. Recall also that we define $\Omega_{\lambda}\left(F_{\bullet}\right)$ as the closure of $\Omega_{\lambda}^{\circ}\left(F_{\bullet}\right)$ and call it a Schubert variety corresponding to λ.

For each integer $d \geqslant 0$ and the collection of partitions $\lambda_{1}, \ldots, \lambda_{N}$ we will define the number $\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle_{d}$ which can be thought as follows. Choose generic points $p_{1}, \ldots, p_{N} \in \mathbb{P}^{1}$ and generic flags $F_{\bullet}^{1}, \ldots, F_{\bullet}^{N}$. Then $\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle_{d}$ is the number of algebraic morphisms $f: \mathbb{P}^{1} \rightarrow X$ of degree d such that $f\left(p_{i}\right) \in \Omega_{\lambda_{i}}\left(F_{\bullet}^{i}\right)$ and is zero if the set of such maps is infinite.

Remark 2.1. Note that Schubert varieties $\Omega_{\lambda}\left(F_{\bullet}\right)$ differ from $\Omega_{\lambda_{i}}\left(F_{\bullet}^{i}\right)$ by the action of some element $g_{i} \in \mathrm{GL}(V)$ so the varieties $\Omega_{\lambda_{i}}\left(F_{\bullet}^{i}\right)$ can be thought as generic translates of the varieties $\Omega_{\lambda_{i}}\left(F_{\bullet}\right)$ respectively.
Remark 2.2. Note that for $d=0$ the number $\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle_{0}$ is just the intersection number $\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle$. Indeed morphism $f: \mathbb{P}^{1} \rightarrow X$ of degree d should map whole \mathbb{P}^{1} to some point $x \in X$. Now from the conditions $f\left(p_{i}\right) \in \Omega_{\lambda_{i}}\left(F_{\bullet}^{i}\right)$ we conclude that $p \in \bigcap_{i} \Omega_{\lambda_{i}}\left(F_{\bullet}^{i}\right)$ so $\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle_{0}=$ $\#\left(\bigcap_{i=1}^{N} \Omega_{\lambda_{i}}\left(F_{\bullet}^{i}\right)\right)=\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle$, where the last equality holds since varieties $\Omega_{\lambda_{i}}\left(F_{\bullet}\right), \Omega_{\lambda_{i}}\left(F_{\bullet}^{i}\right)$ have the same cohomology classes in $H^{*}(\operatorname{Gr}(l, V), \mathbb{C})$ since the differ by the action of some $g_{i} \in \mathrm{GL}(V)$ and $\mathrm{GL}(V)$ is connected.

To give a rigorous definition of the number $\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle_{d}$ for $d>0$ we need to understand how to think about the moduli space \mathcal{M}_{d} of morphisms of degree d from \mathbb{P}^{1} to X geometrically. Note that for $d=0$ this space is naturally identifies with X and by remark 2.2 we can define $\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle_{0}:=\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle$. For $d>0$ we will analogically define $\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle_{d}$ as an intersection pairing of certain varieties in a certain compactification of \mathcal{M}_{d}.

To construct a scheme structure on \mathcal{M}_{d} we will first of all describe the functor $\mathbf{S c h}^{o p p} \rightarrow$ Set which it should represent and then will deduce from classical Grothendieck results that this functor is indeed represented by some smooth quasi-projective scheme of finite type. We start from recalling a description of the functor

$$
\operatorname{Sch}^{o p p} \rightarrow \text { Set }, S \mapsto \operatorname{Map}(S, \operatorname{Gr}(l, V))
$$

which represents Grassmannian $\operatorname{Gr}(l, V)$. Let \mathcal{U} be the tautological vector bundle on $\operatorname{Gr}(l, V)$ of rank l which can be defined as follows. Recall the identification $\mathrm{Gr}(l, V) \simeq \mathrm{GL}(V) / P$ and consider the standard representation $P \curvearrowright U$. Then we can form the associated vector bundle $\mathcal{U}:=\operatorname{GL}(V) *_{P} U$ which we will call tautological.
Remark 2.3. Recall that if G is an algebraic group and $H \subset G$ is an algebraic subgroup then to any finite dimensional representation $H \curvearrowright W$ we can associate a vector bundle $G *_{H} W$ which can be defined as follows. We have the following free right action $G \times W \curvearrowleft H,(g, w) . h=\left(g h, h^{-1} w\right)$ then $G *_{H} W:=(G \times W) / H$. Note that $G *_{H} W$ has the natural projection morphism $G *_{H} W \rightarrow G / H$ which makes it a vector bundle.

Remark 2.4. Note that if the action $H \curvearrowright W$ can be extended to the action $G \curvearrowright W$ then the vector bundle $G *_{H} W$ is trivial. Indeed we have the isomorphism $(G / H) \times W \xrightarrow{\sim} G *_{H} W$ given by $([g], w) \mapsto\left(g, g^{-1} w\right)$.

Note that we have the natural embedding of vector bundles

$$
\mathcal{U}=\mathrm{GL}(V) *_{P} U \hookrightarrow \mathrm{GL}(V) *_{P} V=V \otimes \mathcal{O}_{X}
$$

which corresponds to the embedding $U \hookrightarrow V$. Under this embedding fiber of \mathcal{U} over a point $W \in \operatorname{Gr}(l, V)$ identifies with $W \subset V$.

Vector bundle \mathcal{U} also has the following description which will be useful in the proof of proposition 2.5. Recall the Plücker embedding

$$
\iota: \operatorname{Gr}(l, V) \hookrightarrow \mathbb{P}\left(\Lambda^{l} V\right), W \mapsto \Lambda^{l} W
$$

Recall that we have a natural derivative (contraction) map

$$
\text { contr: } \Lambda^{l-1} V^{*} \otimes \Lambda^{l} V \rightarrow V, f \otimes v \mapsto \partial_{f}(v)
$$

Then the dual map contr* : $V^{*} \rightarrow \Lambda^{k-1} V \otimes \Lambda^{k} V^{*}$ gives us the morphism

$$
V^{*} \otimes \mathcal{O}_{\mathbb{P}\left(\Lambda^{l} V\right)} \rightarrow \Lambda^{l-1} V \otimes \mathcal{O}_{\mathbb{P}\left(\Lambda^{l} V\right)}(1)
$$

induced by the isomorphism $\Gamma\left(\mathbb{P}\left(\Lambda^{l} V\right), \mathcal{O}_{\mathbb{P}\left(\Lambda^{l} V\right)}(1)\right) \simeq \Lambda^{l} V^{*}$.
By taking duals it gives us the morphism

$$
\Phi: \Lambda^{l-1} V^{*} \otimes \mathcal{O}_{\mathbb{P}\left(\Lambda^{l} V\right)}(-1) \rightarrow V \otimes \mathcal{O}_{\mathbb{P}\left(\Lambda^{l} V\right)}
$$

Fiberwise this morphism can be described as follows. Note that $\mathcal{O}_{\mathbb{P}\left(\Lambda^{l} V\right)}(-1)$ is a tautological bundle on $\mathbb{P}\left(\Lambda^{l} V\right)$ so its fiber over a point $P \in \mathbb{P}\left(\Lambda^{l} V\right)$ is $P \subset \Lambda^{l} V$ considered as 1-dimensional vector space. Now starting from a vector $v \in P \subset \Lambda^{l} V$ and $f \in \Lambda^{l-1} V^{*}$ have $\Phi_{P}(f \otimes v)=\partial_{f}(v)$. It now follows from the definitions that we have $\mathcal{U}=\left.\operatorname{Im} \Phi\right|_{\operatorname{Gr}(l, V)}$ since for any vector $v \in \Lambda^{l} V$ the support $\operatorname{Supp}(v) \subset V$ of this vector coincides with the image $\operatorname{contr}\left(\Lambda^{l-1} V^{*} \otimes \mathbb{C} v\right)$.

We are now ready to formulate and prove the universal property of $\operatorname{Gr}(l, V)$.

Proposition 2.5. For $S \in \operatorname{Sch}$ the set $\operatorname{Map}(S, \operatorname{Gr}(l, V))$ identifies with the set of pairs (φ, \mathcal{E}) consisting of a vector bundle \mathcal{E} of rank l on S and an injection of vector bundles $\mathcal{E} \hookrightarrow V \otimes \mathcal{O}_{S}$.

Proof. If $f: S \rightarrow X$ is any morphism then we can set $\mathcal{E}:=f^{*}(\mathcal{U})$ and $\varphi:=f^{*}\left(\mathcal{U} \hookrightarrow V \otimes \mathcal{O}_{X}\right)$.

In the opposite direction starting from a pair (φ, \mathcal{E}) we can consider a morphism

$$
\Lambda^{l} \varphi: \Lambda^{l} \mathcal{E} \rightarrow \Lambda^{l} V \otimes \mathcal{O}_{S}
$$

It follows from the universal property of $\mathbb{P}\left(\Lambda^{l} V\right)$ that there exists a morphism $\bar{f}: S \rightarrow \mathbb{P}\left(\Lambda^{l} V\right)$ such that $\bar{f}^{*}\left(\mathcal{O}_{\mathbb{P}\left(\Lambda^{l} V\right)}(-1)\right) \simeq \Lambda^{l} \mathcal{E}$. It is clear from the definitions that the image of \bar{f} lies in $\operatorname{Gr}(l, V) \subset \mathbb{P}\left(\Lambda^{l} V\right)$ so we obtain the desired morphism $f: S \rightarrow \operatorname{Gr}(l, V)$.

We conclude that a morphism $\mathbb{P}^{1} \rightarrow \operatorname{Gr}(l, V)$ is the same as the pair of rank l vector bundle \mathcal{E} on \mathbb{P}^{1} and an embedding $\mathcal{E} \hookrightarrow V \otimes \mathcal{O}_{\mathbb{P}^{1}}$. Note that the embedding of vector bundles $\mathcal{E} \hookrightarrow V \otimes \mathcal{O}_{\mathbb{P}^{1}}$ is the same as the surjection of vector bundles $V^{*} \otimes \mathcal{O}_{\mathbb{P}^{1}} \rightarrow \mathcal{E}^{*}$. Note also that the condition that f has degree d precisely means that $\operatorname{deg}\left(\mathcal{E}^{*}\right)=d$, here $\operatorname{deg}\left(\mathcal{E}^{*}\right):=\operatorname{deg} \Lambda^{\text {top }} \mathcal{E}^{*}$.

Let us now define the functor $\mathcal{M}_{d}:$ Sch $^{o p p} \rightarrow$ Set. Note that the set $\mathcal{M}_{d}(\operatorname{Spec}(\mathbb{C}))=: \mathcal{M}_{d}(\mathbb{C})$ must parametrize morphisms $f: \mathbb{P}^{1} \rightarrow X$ of degree d or equivalently (by proposition 2.5) pairs (π, \mathcal{E}) consisting of a vector bundle \mathcal{E} on \mathbb{P}^{1} of rank l and a surjection $V \otimes \mathcal{O}_{\mathbb{P}^{1}} \rightarrow \mathcal{E}$ of vector bundles such that $\operatorname{deg}(\mathcal{E})=d$.

Recall that if \mathcal{F} is a coherent sheaf on a projective scheme X with a fixed embedding $\iota: X \hookrightarrow \mathbb{P}^{m}$ then there exists a unique polynomial $P_{\mathcal{F}}(t)$ of degree $\leqslant m$ such that $P_{\mathcal{F}}(n)=\operatorname{dim}_{\mathbb{C}}(\Gamma(X, \mathcal{F}(n)))$ for $n \in \mathbb{Z}, n \gg 0$. This polynomial is called Hilbert polynomial of (X, ι).

Example 2.6. For $X=\mathbb{P}^{1}, \mathcal{F}$ a vector bundle of rank l and degree d, $\iota=\operatorname{Id}_{\mathbb{P}^{1}}$ we have $P_{\mathcal{F}}(t)=t l+l+d$. Indeed by Birkhoff-Grothendieck theorem every such \mathcal{F} is isomorphic to the direct sum $\mathcal{O}\left(m_{1}\right) \oplus \ldots \oplus \mathcal{O}\left(m_{l}\right)$ for some $m_{i} \in \mathbb{Z}$ so for $m \gg 0$ we have $\operatorname{dim}_{\mathbb{C}} \Gamma\left(\mathbb{P}^{1}, \mathcal{F}(m)\right)=\left(m_{1}+m+1\right)+\ldots+$ $\left(m_{l}+m+1\right)=l m+l+d$.

So we see that the condition that $\mathcal{E} \in \operatorname{Vect}\left(\mathbb{P}^{1}\right)$ has degree d and rank l can be compactly rewritten as $P_{\mathcal{E}}(t)=t l+l+d$. Note also that this approach allows us to associate rank and degree to any coherent sheaf $\mathcal{E} \in \operatorname{Coh}\left(\mathbb{P}^{1}\right)$. Indeed if $P_{\mathcal{E}}(t)=a t+b$ then we set $r(E):=a$ and $d(\mathcal{E}):=b-a$ and call them rank and degree respectively.

Definition 2.7. Pick a test scheme $S \in \operatorname{Sch}$ then $\mathcal{M}_{d}(S)$ is the set of pairs (\mathcal{E}, π), where \mathcal{E} is a locally free sheaf (vector bundle) on $\mathbb{P}^{1} \times S$ flat over S such
that $P_{\left.\mathcal{E}\right|_{\mathbb{P}^{1} \times s}}(t)=t l+l+d$ for any geometric point s of $S, \pi: V^{*} \otimes \mathcal{O}_{\mathbb{P}^{1} \times S} \rightarrow \mathcal{E}$ is the surjection of vector bundles.

Theorem 2.8. The functor \mathcal{M}_{d} is represented by a smooth quasi-projective scheme of dimension $n d+(n-l) l$ to be denoted by the same symbol.

To prove this theorem we define a smooth projective variety \mathcal{Q}_{d} together with an open embedding $\mathcal{M}_{d} \hookrightarrow \mathcal{Q}_{d}$.

Definition 2.9. Pick a test scheme $S \in \operatorname{Sch}$ then $\mathcal{Q}_{d}(S)$ is the set of pairs (\mathcal{E}, π), where \mathcal{E} is a coherent sheaf on $\mathbb{P}^{1} \times S$ flat over S and such that $P_{\mathcal{E}_{\mathbb{P}^{1} \times s}}(t)=t l+l+d$ for any geometric point s of $S, \pi: V^{*} \otimes \mathcal{O}_{\mathbb{P}^{1} \times S} \rightarrow \mathcal{E}$ is the surjection of sheaves.

Note that we have the natural embedding of functors $\mathcal{M}_{d} \hookrightarrow \mathcal{Q}_{d}$. Now theorem 2.8 follows from the theorem bellow.

Theorem 2.10. Functor \mathcal{Q}_{d} is represented by a smooth projective scheme of dimension $n d+(n-l) l$ and the morphism $\mathcal{M}_{d} \hookrightarrow \mathcal{Q}_{d}$ identifies \mathcal{M}_{d} with an open subscheme of \mathcal{Q}_{d}.

Proof. Follows from $[\mathrm{Gr}]$, see also $[\mathrm{N}]$.
Example 2.11. For $l=1$ (i.e. $\operatorname{Gr}(l, V)=\mathbb{P}^{n-1}$) we have $\mathcal{Q}_{d}=\mathbb{P}^{n(d+1)-1}$. It can be easily seen at the level of \mathbb{C}-points: a point of $\mathcal{Q}_{d}(\mathrm{Spec} \mathbb{C})$ consists of a coherent sheaf $\mathcal{E} \in \operatorname{Coh}\left(\mathbb{P}^{1}\right)$ of degree d and rank 1 and a surjection of sheaves $\pi: V^{*} \otimes \mathcal{O}_{\mathbb{P}^{1}} \rightarrow \mathcal{E}$. Sheaf \mathcal{E} must be of the form $\mathcal{O}(d) \oplus \mathcal{F}$, where \mathcal{F} is the sum of finite number of skyscraper sheaves on \mathbb{P}^{1}. There are no nonzero morphisms from $\mathcal{O}_{\mathbb{P}^{1}}$ to any skyscraper sheaf so we conclude that $\mathcal{F}=0$ (otherwise there are no surjection $V^{*} \otimes \mathcal{O}_{\mathbb{P}^{1}} \rightarrow \mathcal{E}$) i.e. $\mathcal{E}=\mathcal{O}(d)$. We see that

$$
\operatorname{Hom}\left(V^{*} \otimes \mathcal{O}_{\mathbb{P}^{1}}, \mathcal{E}\right)=\operatorname{Hom}\left(V^{*} \otimes \mathcal{O}_{\mathbb{P}^{1}}, \mathcal{O}(d)\right) \simeq V \otimes S^{d}\left(\mathbb{C}^{2^{*}}\right)
$$

and an element $f \in \operatorname{Hom}\left(V^{*} \otimes \mathcal{O}_{\mathbb{P}^{1}}, \mathcal{E}\right)$ defines a surjective morphism of sheaves iff $f \neq 0$. We conclude that $\mathcal{Q}_{d}=\mathbb{P}\left(V \otimes S^{d}\left(\mathbb{C}^{2^{*}}\right)\right)=\mathbb{P}^{n(d+1)-1}$.

Note that by the universal property of \mathcal{Q}_{d} applied to $S=\mathcal{Q}_{d}$ and Id: $\mathcal{Q}_{d} \rightarrow$ \mathcal{Q}_{d} we obtain a universal exact sequence of sheaves on $\mathbb{P}^{1} \times \mathcal{Q}_{d}$:

$$
0 \rightarrow \mathcal{S}_{d} \rightarrow V^{*} \otimes \mathcal{O}_{\mathbb{P}^{1} \times \mathcal{Q}_{d}} \rightarrow \mathcal{T}_{d} \rightarrow 0
$$

Sheaf \mathcal{S}_{d} is locally free (follows from the fact that \mathcal{T}_{d} is flat over \mathcal{Q}_{d}). So we can consider the dual universal map

$$
u: V \otimes \mathcal{O}_{\mathbb{P}^{1} \times \mathcal{Q}_{d}} \rightarrow \mathcal{S}_{d}^{*}
$$

Now we can think about moduli space of morphisms $\mathbb{P}^{1} \rightarrow \operatorname{Gr}(l, V)$ as about a smooth algebraic variety \mathcal{M}_{d} and we want to define algebraic varieties $\Omega_{\lambda, p}\left(F_{\bullet}\right) \subset \mathcal{M}_{d}$ which would parametrize morphisms $f: \mathbb{P}^{1} \rightarrow \mathcal{M}_{d}$ such that $f(p) \in \Omega_{\lambda}\left(F_{\bullet}\right)$, here $\lambda \in P(l \times k)$ and $p \in \mathbb{P}^{1}$ is some point. To do so we need to define an evaluation morphism ev: $\mathbb{P}^{1} \times \mathcal{M}_{d} \rightarrow \operatorname{Gr}(l, V)$.

Definition 2.12. For $S \in \operatorname{Sch}$ define a $\operatorname{map} \operatorname{ev}(S):\left(\mathbb{P}^{1} \times \mathcal{M}_{d}\right)(S) \rightarrow$ $\operatorname{Gr}(l, V)(S)$ as follows: note that a morphism $f: S \rightarrow \mathbb{P}^{1} \times \mathcal{M}_{d}$ defines us a morphism $S \rightarrow \mathcal{M}_{d}$ (via the projection $\mathbb{P}^{1} \times \mathcal{M}_{d} \rightarrow \mathcal{M}_{d}$) which is the same as the pair (\mathcal{E}, π) as in definition 2.7. Consider now the natural embedding $\iota_{p}: p \times S \hookrightarrow \mathbb{P}^{1} \times S$ and send f to $\left(\iota_{p}^{*} \mathcal{E}, \iota_{p}^{*} \pi\right) \in \operatorname{Gr}(l, V)(S)$.

Note that directly from the definitions ev is a morphism of functors so it induces a morphism of the corresponding varieties to be denoted by the same symbol.

Example 2.13. For $l=1$ we have $\operatorname{Gr}(l, V)=\mathbb{P}(V)$ and recall that $\mathcal{Q}_{d}=$ $\mathbb{P}\left(V \otimes S^{d} \mathbb{C}^{2 *}\right)$ and $\mathcal{M}_{d} \subset \mathbb{P}\left(V \otimes S^{d} \mathbb{C}^{2^{*}}\right)$ is an open subset. Then the morphism ev : $\mathbb{P}^{1} \times \mathcal{M}_{d} \rightarrow \mathbb{P}(V)$ is a restriction to $\mathbb{P}^{1} \times \mathcal{M}_{d}$ of the birational morphism

$$
\mathbb{P}\left(\mathbb{C}^{2}\right) \times \mathbb{P}\left(V \otimes S^{d} \mathbb{C}^{2^{*}}\right) \rightarrow \mathbb{P}(V)
$$

induced by the map $\mathbb{C}^{2} \otimes\left(V \otimes S^{d} \mathbb{C}^{2 *}\right) \rightarrow V, x \otimes v \otimes f \mapsto f(x) v$.
Definition 2.14. For $p \in \mathbb{P}^{1}, \lambda \in P(l \times k)$ and a flag F_{\bullet} we define $\Omega_{\lambda, p}\left(F_{\bullet}\right)$ as the intersection $\mathrm{ev}^{-1}\left(\Omega_{\lambda}\left(F_{\bullet}\right)\right) \cap\left(p \times \mathcal{M}_{d}\right)$. It can be considered as a subscheme of \mathcal{M}_{d} of codimension $|\lambda|$.

Example 2.15. Assume that $l=1$. Recall that for a fixed flag F_{\bullet} and $0 \leqslant a \leqslant n-1$ we have $\Omega_{a}\left(F_{\bullet}\right)=\mathbb{P}\left(F_{n-a}\right) \subset \mathbb{P}(V)$. It follows from the example 2.13 that for a point $p=[x: y] \in \mathbb{P}^{1}$ we have $\Omega_{a, p}\left(F_{\bullet}\right)=\mathbb{P}\left(\tilde{F}_{n-a}\right) \cap$ \mathcal{M}_{d}, where the intersection is taken in $\mathbb{P}\left(V \otimes S^{d} \mathbb{C}^{2 *}\right)$ and \tilde{F}_{n-a} is the preimage of F_{n-a} under the linear map

$$
V \otimes S^{d} \mathbb{C}^{2^{*}} \rightarrow V, v \otimes f \mapsto f(x, y) v
$$

Let us now define compactifications $\bar{\Omega}_{\lambda, p}\left(F_{\bullet}\right)$ of the varieties $\Omega_{\lambda, p}\left(F_{\bullet}\right)$ in \mathcal{Q}_{d} (we will then define the desired numbers $\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle_{d}$ as intersection pairings of cohomology classes $\bar{\Omega}_{\lambda, p}\left(F_{\bullet}\right)$ in the smooth variety $\left.\mathcal{Q}_{d}\right)$. For $l=$ 1 we will just have $\bar{\Omega}_{a, p}\left(F_{\bullet}\right)=\mathbb{P}\left(\tilde{F}_{n-a}\right) \subset \mathcal{Q}_{d}$ (see the example 2.15 for notations).

As we already see in the case $l=1$ (see example 2.13) the morphism ev : $\mathbb{P}^{1} \times \mathcal{M}_{d} \rightarrow \operatorname{Gr}(l, V)$ does not extend to a morphism $\mathbb{P}^{1} \times \mathcal{Q}_{d} \rightarrow \operatorname{Gr}(l, V)$ so we can not define varieties $\bar{\Omega}_{\lambda, p}\left(F_{\bullet}\right) \subset \mathcal{Q}_{d}$ directly in the same way as we have defined varieties $\Omega_{\lambda, p}\left(F_{\bullet}\right) \subset \mathcal{M}_{d}$ in definition 2.14. We will use a universal morphism $u: V \otimes \mathcal{O}_{\mathbb{P}^{1} \times \mathcal{Q}_{d}} \rightarrow \mathcal{S}_{d}^{*}$ to define them.

Definition 2.16. For each $i=1, \ldots, l$, let $D_{i, \lambda_{i}}\left(F_{\bullet}\right) \subset \mathbb{P}^{1} \times \mathcal{Q}_{d}$ be the largest subscheme on which the dimension of the kernel of $u: F_{n-l-i+\lambda_{i}} \otimes \mathcal{O}_{\mathbb{P}^{1} \times \mathcal{Q}_{d}} \rightarrow$ \mathcal{S}_{d}^{*} is at least i, and let $D_{i, \lambda_{i}, p}\left(F_{\bullet}\right)$ be the intersection $D_{i, \lambda_{i}, p}\left(F_{\bullet}\right) \cap\left(p \times \mathcal{Q}_{d}\right)$ considered as a subscheme of \mathcal{Q}_{d}. Then we define

$$
\bar{\Omega}_{\lambda, p}\left(F_{\bullet}\right):=D_{1, \lambda_{1}, p}\left(F_{\bullet}\right) \cap \ldots \cap D_{l, \lambda_{l}, p}\left(F_{\bullet}\right) .
$$

This is a subscheme of \mathcal{Q}_{d} of codimension $|\lambda|$.
It is clear from the definitions that $\bar{\Omega}_{\lambda, p}\left(F_{\bullet}\right) \cap \mathcal{M}_{d}=\Omega_{\lambda, p}\left(F_{\bullet}\right)$.
Example 2.17. It follows from example 2.15 and the definitions that for $l=1$ and $0 \leqslant a \leqslant n-1$ we have $\bar{\Omega}_{a, p}\left(F_{\bullet}\right)=\mathbb{P}\left(\tilde{F}_{n-a}\right)$. Note also that

$$
\operatorname{dim} \bar{\Omega}_{a, p}\left(F_{\bullet}\right)=\operatorname{dim}\left(\tilde{F}_{n-a}\right)-1=n d+\operatorname{dim}\left(F_{n-a}\right)=n d+n-a-1
$$

since the map

$$
V \otimes S^{d} \mathbb{C}^{2^{*}} \rightarrow V, v \otimes f \mapsto f(x, y) v
$$

is clearly surjective. We conclude that the codimension of $\bar{\Omega}_{a, p}\left(F_{\bullet}\right)$ in \mathcal{Q}_{d} indeed equals to a.

Let us denote by $\bar{\sigma}_{\lambda} \in H^{|\lambda|}\left(\mathcal{Q}_{d}, \mathbb{Z}\right)$ the cohomology class of $\bar{\Omega}_{\lambda, p}\left(F_{\bullet}\right)$. We are now ready to define Gromov-Witten numbers $\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle_{d}$.

Definition 2.18. For $\lambda_{1}, \ldots, \lambda_{N} \in P(l \times k)$ let $\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle_{d}$ be zero if $\left|\lambda_{1}\right|+\left|\lambda_{2}\right|+\ldots+\left|\lambda_{l}\right| \neq \operatorname{dim} \mathcal{M}_{d}=n d+(n-l) l$. Otherwise we define $\left\langle\Omega_{\lambda_{1}}, \ldots, \Omega_{\lambda_{N}}\right\rangle_{d}$ as the intersection pairing of the cohomology classes $\bar{\sigma}_{\lambda_{i}} \in$ $H^{*}\left(\mathcal{Q}_{d}, \mathbb{C}\right)$.

Example 2.19. Assume $l=1$ then $\lambda_{1}, \ldots, \lambda_{N}$ are just some numbers a_{1}, \ldots, a_{N} such that $0 \leqslant a_{i} \leqslant n-1$. Let us now compute the numbers $\left\langle\Omega_{a_{1}}, \ldots, \Omega_{a_{N}}\right\rangle_{d}$. We assume that $a_{1}+\ldots+a_{N}=n(d+1)-1$ (otherwise this number is zero by the definition). It follows from example 2.11 that $\mathcal{Q}_{d}=\mathbb{P}\left(V \otimes S^{d} \mathbb{C}^{2 *}\right)=$ $\mathbb{P}^{n(d+1)-1}$ so we have an isomorphism $H^{*}\left(\mathcal{Q}_{d}, \mathbb{Z}\right) \simeq \mathbb{Z}[t] / t^{n(d+1)}$ and by example 2.17 we have $\bar{\Omega}_{p, a}\left(F_{\bullet}\right)=\mathbb{P}\left(\tilde{F}_{n-a_{i}}\right)$ for certain subspace $\tilde{F}_{n-a_{i}} \subset V \otimes S^{d} \mathbb{C}^{2 *}$ of codimension a_{i} so we have $\bar{\sigma}_{a_{i}}=t^{a_{i}}$. We conclude that $\left\langle\Omega_{a_{1}}, \ldots, \Omega_{a_{N}}\right\rangle_{d}=$ 1.

2.1 Small quantum cohomology ring

We can now define the small quantum cohomology ring $Q H^{*}(\operatorname{Gr}(l, V), \mathbb{Z}):=$ $H^{*}(\operatorname{Gr}(l, V), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}[q]$ and set $\tilde{\sigma}_{\lambda}:=\sigma_{\lambda} \otimes 1$. The ring structure on $Q H^{*}(\operatorname{Gr}(l, V), \mathbb{Z})$ is defined by

$$
\tilde{\sigma}_{\lambda} \cdot \tilde{\sigma}_{\mu}:=\sum_{\nu, d \geqslant 0}\left\langle\Omega_{\lambda}, \Omega_{\mu}, \Omega_{\nu^{t}}\right\rangle_{d} q^{d} \tilde{\sigma}_{\nu}
$$

It is a nontrivial fact that • defines an associative ring structure.
Example 2.20. Consider the case $l=1$. In this case λ, μ, ν are just numbers $0 \leqslant a, b, c \leqslant n-1$ and it follows from example 2.19 that $\left\langle\Omega_{a}, \Omega_{b}, \Omega_{n-1-c}\right\rangle_{d}=0$ if $a+b+n-c \neq n(d+1)$ and is 1 otherwise. We conculde that $Q H^{*}(\operatorname{Gr}(l, V), \mathbb{Z})$ is isomorphic to $\mathbb{Z}[t, q] /\left(t^{n}-q\right)$ via the map $\sigma_{a} \mapsto t^{a}$. Note that for $q=0$ we obtain the cohomology ring of \mathbb{P}^{n-1}.

In the example bellow we have explicitly described the $\operatorname{ring} Q H^{*}(\operatorname{Gr}(l, V), \mathbb{Z})$ for $l=1$. The goal of the next sections is to generalize this result to the case of arbitrary l.

3 Main tools

We start from the following definition.
Definition 3.1. If A is a subset of $\operatorname{Gr}(l, V)$ then we define $\operatorname{Span} A$ to be the sum $\sum_{W \in A} W$. We also define ker A as the intersection $\bigcap_{W \in A} W$.
Example 3.2. For $A=\{W\} \in \operatorname{Gr}(l, V)$ we have $\operatorname{Span} A=\operatorname{ker} A=W \subset V$. For $A=\operatorname{Gr}(l, V)$ we have $\operatorname{Span} A=V$, $\operatorname{ker} A=0$.

Remark 3.3. Note that for a fixed subspace $F \subset V$ and a subvariety $A \subset$ $\operatorname{Gr}(l, V)$ we have Span $A \subset F$ (resp. $F \subset \operatorname{ker} A)$ iff $A \subset \operatorname{Gr}(l, K)($ resp. $A \subset$ $\operatorname{Gr}(l-\operatorname{dim} K, V / K) \subset \operatorname{Gr}(l, V))$. Note also that if $i: \operatorname{Gr}(l, V) \xrightarrow{\sim} \operatorname{Gr}(n-$ $\left.l, V^{*}\right), W \mapsto$ Ann W is the natural identification. Then

$$
\operatorname{Span} i(A)=\operatorname{Ann}(\operatorname{ker} A), \operatorname{ker} A=\operatorname{Ann}(\operatorname{Span} A)
$$

Lemma 3.4. Let C be a rational curve of degree d in X. Then Span C has dimension at most $l+d$ and $\operatorname{ker} C$ has dimension at least $l-d$.

Proof. Curve C is an image of a regular function $f: \mathbb{P}^{1} \rightarrow X$ of degree d. By proposition 2.5 this map corresponds to $\mathcal{E}=f^{*}(\mathcal{U}) \subset V \otimes \mathcal{O}_{\mathbb{P}^{1}}$, $\varphi:=f^{*}\left(\mathcal{U} \hookrightarrow V \otimes \mathcal{O}_{\mathbb{P}^{1}}\right)$. Point $p \in \mathbb{P}^{1}$ goes to $\mathcal{E}_{p} \subset V \in X$. Condition that $\operatorname{deg} f=d$ corresponds to $\operatorname{deg} \mathcal{E}=-d$. Therefore $\mathcal{E}=\oplus_{i=1}^{l} \mathcal{O}_{\mathbb{P}^{1}}\left(-a_{i}\right)$, where $a_{i} \geqslant 0, \sum_{i=1}^{l} a_{i}=d$. Each map $V^{*} \otimes \mathcal{O}_{\mathbb{P}^{1}} \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(a)$ is defined by map on global sections $\phi: V^{*} \rightarrow \Gamma\left(\mathcal{O}_{\mathbb{P}^{1}}(a)\right)$. Taking duals we see that map $\mathcal{O}_{\mathbb{P}^{1}}(-a) \rightarrow V \otimes \mathcal{O}_{\mathbb{P}^{1}}$ is given by map $\phi^{*}: \Gamma\left(\mathcal{O}_{\mathbb{P}^{1}}(a)\right)^{*} \rightarrow V$. Hence map from \mathcal{E} to $V \otimes \mathcal{O}_{\mathbb{P}^{1}}$ is given by $\phi_{1}^{*}, \ldots, \phi_{l}^{*}$. It is easy to see that for any $p \in \mathbb{P}^{1}$ its image is $L=\operatorname{Span}\left(v_{1}, \ldots, v_{l}\right)$ where $v_{i} \in \operatorname{Im} \phi_{i}^{*}$. Therefore span of C is contained in $\cup \operatorname{Im} \phi_{i}^{*}$, so it has dimension at most

$$
\sum \operatorname{dim} \phi_{i}^{*} \leqslant \sum \operatorname{dim} \Gamma\left(\mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)\right)=\sum\left(1+a_{i}\right)=l+d
$$

On the other hand at least $l-d$ of a_{i} equal to 0 . In this case $a_{i}=0$ we have $\operatorname{Im} \phi_{i}^{*}=1$. So any L contains $\operatorname{Im} \phi_{i}^{*}$ for this i. We deduce that kernel of C has dimension at least $l-d$.

If λ is a partition and d is a nonnegative integer we define $\hat{\lambda}$ to be the partition obtained by removing the leftmost d columns from the Young diagram of d, i.e. $\hat{\lambda}_{i}=\max \left(\lambda_{i}-d, 0\right)$.

Lemma 3.5. Let $C \subset X$ be a rational curve of degree $d \leqslant k$ and let $E \subset V$ be an $l+d$ dimensional subspace containing the span of C. If λ is a partition such that $C \cap \Omega_{\lambda}\left(F_{\bullet}\right) \neq \varnothing$ then W belongs to the Schubert variety $\Omega_{\hat{\lambda}}\left(F_{\bullet}\right)$ in $\operatorname{Gr}(l+d, V)$.

Proof. Recall that the Schubert variety $\Omega_{\lambda}\left(F_{\bullet}\right)$ is defined as

$$
\left\{W \in X \mid \operatorname{dim}\left(W \cap F_{k+i-\lambda_{i}}\right) \geqslant i \forall 1 \leqslant i \leqslant l\right\} .
$$

Let $W \in C \cap \Omega_{\lambda}\left(F_{\bullet}\right)$. By definition $W \subset E$. Hence $\operatorname{dim}\left(E \cap F_{k+i-\lambda_{i}}\right) \geqslant$ $\operatorname{dim}\left(W \cap F_{k+i-\lambda_{i}}\right) \geqslant i$ for all $1 \leqslant i \leqslant l$. On the other hand $F_{k-d+i-\hat{\lambda}_{i}}=$ $F_{\min \left(k+i-\lambda_{i}, k-d+i\right)}$. Intersection of $l+d$ dimensional subspace E with $k-d+i$ dimensional subspace F_{k-d+i} has dimension at least i. Therefore $\operatorname{dim}(E \cap$ $\left.F_{k-d+i-\hat{\lambda}_{i}}\right) \geqslant i$. We deduce that E belongs to $\Omega_{\hat{\lambda}}\left(F_{\bullet}\right)$.
Corollary 3.6. If $\Omega_{\hat{\lambda}} \cap \Omega_{\hat{\mu}} \cap \Omega_{\hat{\nu}}=\varnothing$ then $\left\langle\Omega_{\lambda}, \Omega_{\mu}, \Omega_{\nu}\right\rangle_{d}=0$.
This corollary allows us to deduce statements about the quantum cohomology from statements about the usual cohomology.

Recall that for a partition λ we denote by $\ell(\lambda)$ the number of nonzero rows of λ. The following lemma is very useful.

Lemma 3.7. Let λ and μ be partitions contained in $l \times k$ rectangle such that $l(\lambda)+l(\mu) \leqslant l$. Then

$$
\tilde{\sigma}_{\lambda} \cdot \tilde{\sigma}_{\mu}=\left(\sigma_{\lambda} \cdot \sigma_{\mu}\right) \otimes 1
$$

Proof. Suppose that $d \geqslant 1$ and ν is a partition such that $|\lambda|+|\mu|+|\nu|=$ $l k+n d$. Then we have
$|\hat{\lambda}|+|\hat{\mu}|+|\hat{\nu}| \geqslant|\lambda|+|\mu|+|\nu|-2 l d=l k+n d-2 l d=l k+k d-l d>(l+d)(k-d)$
It follows that for general flags $F_{\bullet}, G_{\bullet}, H_{\bullet}$ we have $\Omega_{\hat{\lambda}}\left(F_{\bullet}\right) \cap \Omega_{\hat{\mu}}\left(G_{\bullet}\right) \cap$ $\Omega_{\hat{\nu}}\left(H_{\bullet}\right)=\varnothing$. Using Corollary 3.6 we get $\left\langle\Omega_{\lambda}, \Omega_{\mu}, \Omega_{\nu}\right\rangle_{d}=0$. The lemma follows.

4 Quantum Pieri and Giambelli formulas

Using the results of section 3 we are ready to formulate and prove quantum versions of Pieri and Giambelli formulas.

4.1 Quantum Pieri

We start from the following lemma. Recall that the number $\left\langle\Omega_{\alpha}, \Omega_{\beta}, \Omega_{i}\right\rangle_{d}$ is nonzero only if $|\alpha|+|\beta|+p=l(n-l)+d n$.
Lemma 4.1. For $d \geqslant 1$ let $\alpha, \beta \in P(l \times k), 1 \leqslant p \leqslant n-l$ be such that $|\alpha|+|\beta|+p=l(n-l)+d n$. Then we have

$$
\left\langle\Omega_{\alpha}, \Omega_{\beta}, \Omega_{p}\right\rangle_{d}=\left\{\begin{array}{l}
\left\langle\Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{p}}\right\rangle_{0} \text { for } d=1 \text { and } \ell(\alpha)=\ell(\beta)=l, \\
0 \text { otherwise } .
\end{array}\right.
$$

Proof. Let C be a rational curve of degree d in $\operatorname{Gr}(l, V)$ which intersects with each of the varieties $\Omega_{\alpha}\left(F_{\bullet}\right), \Omega_{\beta}\left(G_{\bullet}\right), \Omega_{p}\left(H_{\bullet}\right)$ for generic flags $F_{\bullet}, G_{\bullet}, H_{\bullet}$. It follows from lemma 3.4 that there exists $E \subset V$ of dimension $l+d$ such that Span $C \subset E$. By lemma 3.5 we must have $E \in \Omega_{\hat{\alpha}}\left(F_{\bullet}\right) \cap \Omega_{\hat{\beta}}\left(G_{\bullet}\right) \cap \Omega_{\hat{p}}\left(H_{\bullet}\right)$ and in particular $\Omega_{\hat{\alpha}}\left(F_{\bullet}\right) \cap \Omega_{\hat{\beta}}\left(G_{\bullet}\right) \cap \Omega_{\hat{p}}\left(H_{\bullet}\right) \neq \varnothing$. Recall that the codimensions of $\Omega_{\hat{\alpha}}\left(F_{\bullet}\right), \Omega_{\hat{\beta}}\left(G_{\bullet}\right), \Omega_{\hat{p}}\left(H_{\bullet}\right) \subset \operatorname{Gr}(l+d, V)$ are $|\hat{\alpha}|,|\hat{\beta}|,|\hat{p}|$ respectively and $\operatorname{dim} \operatorname{Gr}(l+d, E)=(l+d)(n-l-d)$. We conclude that

$$
\begin{equation*}
|\hat{\alpha}|+|\hat{\beta}|+\hat{p} \leqslant(l+d)(n-l-d) . \tag{1}
\end{equation*}
$$

Note also that α, β lie in an $l \times(n-l)$ rectangle so directly from the definitions we have $|\hat{\alpha}| \geqslant|\alpha|-l d,|\hat{\beta}| \geqslant|\beta|-l d$. We also have $\hat{p}=\max (p-d, 0) \geqslant p-d$. Altogether we obtain

$$
\begin{equation*}
|\hat{\alpha}|+|\hat{\beta}|+\hat{p} \geqslant|\alpha|+|\beta|-2 l d+p-d=(l+d)(n-l-d)+d^{2}-d . \tag{2}
\end{equation*}
$$

We conclude from (1) and (2) that $0 \geqslant d^{2}-d$, hence, we must have $d=1$ and moreover $\ell(\alpha)=\ell(\beta)=l,|\hat{\alpha}|+|\hat{\beta}|+\hat{p}=(l+1)(n-l-1)$. So we have shown that $\left\langle\Omega_{\alpha}, \Omega_{\beta}, \Omega_{i}\right\rangle_{d}=0$ for $d>1$ or if $\ell(\alpha) \neq l$ or $\ell(\beta) \neq l$. Assume that $d=1$ and note that $\left\langle\Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{p}}\right\rangle_{0}$ is nonzero only if $|\hat{\alpha}|+|\hat{\beta}|+\hat{p}=(l+d)(n-l-d)$. We now conclude from (2) that $\left\langle\Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{p}}\right\rangle_{0}=0$ if $\ell(\alpha) \neq l$ or $\ell(\beta) \neq 0$.

Let us now assume that $d=1$ and $\ell(\alpha)=\ell(\beta)=l$, hence, $\hat{\alpha}_{i}=\alpha_{i}-$ $1, \hat{\beta}_{i}=\beta_{i}-1$ for all $i=1,2, \ldots, l$. Recall that our goal is to show that $\left\langle\Omega_{\alpha}, \Omega_{\beta}, \Omega_{p}\right\rangle_{1}=\left\langle\Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{p}}\right\rangle_{0}$. Recall that by proposition 1.4 we have either $\left\langle\Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{i}}\right\rangle_{0}=0$ or $\left\langle\Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{i}}\right\rangle_{0}=1$.

Case 1: If $\left\langle\Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{p}}\right\rangle_{0}=0$ then we must have $\left\langle\Omega_{\alpha}, \Omega_{\beta}, \Omega_{i}\right\rangle_{1}=0$ since otherwise there exists a curve C of degree 1 in $\operatorname{Gr}(l, V)$ which intersects with each of the varieties $\Omega_{\alpha}\left(F_{\bullet}\right), \Omega_{\beta}\left(G_{\bullet}\right), \Omega_{i}\left(H_{\bullet}\right)$ for generic flags $F_{\bullet}, G_{\bullet}, H_{\bullet}$. It then follows from lemma 3.5 that Span $C \subset \Omega_{\hat{\alpha}} \cap \Omega_{\hat{\beta}} \cap \Omega_{\hat{i}}$ and this contradicts to the fact that $\left\langle\Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{i}}\right\rangle_{0}=0$.

Case 2: If $\left\langle\Omega_{\hat{\alpha}}, \Omega_{\hat{\beta}}, \Omega_{\hat{i}}\right\rangle_{0}=1$ then there exists a unique $W \subset V$ of dimension $l+1$ such that $W \in \Omega_{\hat{\alpha}}\left(F_{\bullet}\right) \cap \Omega_{\hat{\beta}}\left(G_{\bullet}\right) \cap \Omega_{\hat{i}}\left(H_{\bullet}\right)$. If C is a rational curve of degree 1 in $\operatorname{Gr}(l, V)$ wich intersects with each of the varieties $\Omega_{\alpha}\left(F_{\bullet}\right), \Omega_{\beta}\left(G_{\bullet}\right), \Omega_{i}\left(H_{\bullet}\right)$ then by lemma 3.5 we must have $\operatorname{Span} C=W$ so

$$
\begin{equation*}
C \subset \operatorname{Gr}(l, W) \subset \operatorname{Gr}(l, V) \tag{3}
\end{equation*}
$$

Recall now that $W \in \Omega_{\hat{\alpha}}\left(F_{\bullet}\right) \cap \Omega_{\hat{\beta}}\left(G_{\bullet}\right) \cap \Omega_{\hat{i}}\left(H_{\bullet}\right)$ and flags $F_{\bullet}, G_{\bullet}, H_{\bullet}$ are generic so W must lie in the interiors of Schubert varieties above i.e.

$$
\operatorname{dim}\left(W \cap F_{n-l-1+i-\hat{\alpha}_{i}}\right)=\operatorname{dim}\left(W \cap G_{n-l-1+i-\hat{\beta}_{i}}\right)=i
$$

Recall that $\hat{\alpha}_{i}=\alpha_{i}-1, \hat{\beta}_{i}=\beta_{i}-1$ so we conclude that

$$
\begin{equation*}
\operatorname{dim}\left(W \cap F_{k+i-\alpha_{i}}\right)=\operatorname{dim}\left(W \cap F_{k+i-\beta_{i}}\right)=i \forall i=1,2, \ldots, l . \tag{4}
\end{equation*}
$$

In particular we obtain $\operatorname{dim}\left(W \cap F_{n-\alpha_{l}}\right)=\operatorname{dim}\left(W \cap G_{n-\beta_{l}}\right)=l$. Set $V_{1}:=W \cap F_{n-\alpha_{l}}, V_{2}:=W \cap G_{n-\beta_{l}}$. It follows from (4) that $V_{1} \in \Omega_{\alpha}\left(F_{\bullet}\right), V_{2} \in$ $\Omega_{\beta}\left(G_{\bullet}\right)$. Note also that codimensions of $\Omega_{\alpha}\left(F_{\bullet}\right), \Omega_{\beta}\left(G_{\bullet}\right)$ in $\operatorname{Gr}(l, V)$ are $|\alpha|,|\beta|$ respectively and $|\alpha|+|\beta|=\operatorname{dim} \operatorname{Gr}(l, V)+n-p>\operatorname{dim} \operatorname{Gr}(l, V)$ so we must have $\Omega_{\alpha} \cap \Omega_{\beta}=\varnothing$ for generic F_{\bullet}, G_{\bullet}. It follows that $V_{1} \neq V_{2}$ so $\operatorname{dim}\left(V_{1} \cap V_{2}\right) \leqslant l-1$. Recall also that $V_{1}, V_{2} \subset W$ and $\operatorname{dim} W=l+1$ so we must have $\operatorname{dim}\left(V_{1} \cap V_{2}\right) \geqslant l-1$. We conclude that $S:=V_{1} \cap V_{2}$ has dimension $l-1$.

Let us return now to our C. Pick $V_{1}^{\prime} \in C \cap \Omega_{\alpha}\left(F_{\bullet}\right), V_{2}^{\prime} \in C \cap \Omega_{\beta}\left(G_{\bullet}\right)$. By the definitions we have $V_{1}^{\prime}, V_{2}^{\prime} \subset \operatorname{Span} C=W$. On the other hand by the definitions $V_{1} \subset F_{n-\alpha_{l}}, V_{2}^{\prime} \subset G_{n-\beta_{l}}$. We conclude that $V_{1}^{\prime} \subset W \cap F_{n-\alpha_{l}}, V_{2}^{\prime} \subset$ $W \cap G_{n-\beta_{l}}$ so we must have $V_{1}^{\prime}=V_{1}, V_{2}=V_{2}^{\prime}$ because of the dimension estimates. It follows that $S \subset \operatorname{ker} C$ but both these varieties have dimension $l-1$ so we conclude that $S=\operatorname{ker} C$. It now follows from the equalities $S=\operatorname{ker} C, W=\operatorname{Span} C$ that $C \subset \mathbb{P}(W / S)$, hence, $C=\mathbb{P}(W / S)$ since C is projective of dimension 1 and $\mathbb{P}(W / S) \simeq \mathbb{P}^{1}$. So we have shown that $\left\langle\Omega_{\alpha}, \Omega_{\beta}, \Omega_{p}\right\rangle_{1} \leqslant 1$. To show that $\left\langle\Omega_{\alpha}, \Omega_{\beta}, \Omega_{p}\right\rangle_{1}=1$ It remains to check that $\mathbb{P}(W / S) \subset \operatorname{Gr}(l, V)$ intersects with $\Omega_{\alpha}\left(F_{\bullet}\right), \Omega_{\beta}\left(G_{\bullet}\right), \Omega_{p}\left(H_{\bullet}\right)$. Note that $V_{1} \in \mathbb{P}(W / S) \cap \Omega_{\alpha}\left(F_{\bullet}\right), V_{2} \in \mathbb{P}(W / S) \cap \Omega_{\beta}\left(G_{\bullet}\right)$. Let us denote by $V_{3} \subset W$ any subspace of dimension l which contains S and $W \cap H_{n-l-p+1}$. By the definition $S \subset V_{3} \subset W$ so $V_{3} \in \mathbb{P}(W / S)$. Note also that $V_{3} \in \Omega_{p}\left(H_{\bullet}\right)$ since $V_{3} \cap H_{n-l+1-p} \supset W \cap H_{n-l+1-p}$ and the latter has dimension 1. We conclude that $V_{3} \in \mathbb{P}(W / S) \cap \Omega_{p}\left(H_{\bullet}\right)$ and the claim follows.

Theorem 4.2. Pick $\lambda \in P(l \times k)$ and $0 \leqslant p \leqslant n-l$. Then we have

$$
\begin{equation*}
\sigma_{p} \cdot \sigma_{\lambda}=\sum_{\substack{\mu,|\mu|=|\lambda|+p \\ n-l \geqslant \mu_{i} \geqslant \lambda_{i} \geqslant \mu_{i+1}}} \sigma_{\mu}+q \sum_{\substack{\nu,|\nu|=|\lambda|+p-n \\ \lambda_{i}-1 \geqslant \nu_{i} \geqslant \lambda_{i+1}-1 \geqslant 0}} \sigma_{\nu} . \tag{5}
\end{equation*}
$$

Proof. Directly follows from the classical Pieri formula (see proposition 1.4) and lemma 4.1.

Remark 4.3. Note that the first sum in (5) is taken over all μ that can be obtained from λ by adding p boxes with no two in the same column and the
second sum is zero if $\ell(\lambda)<l$ and otherwise is taken over all ν such that ν that can be obtained from $\left(\lambda_{1}-1, \ldots, \lambda_{l}-1\right)$ by adding $l+p-n$ boxes with no two in the same column.

4.2 Quantum Giambelli

We can now prove the quantum version of the Giambelli theorem.
Theorem 4.4 ([Be]). If λ is a partition contained in $l \times k$ rectangle then the Schubert class $\tilde{\sigma}_{\lambda}$ in $Q H^{*} \operatorname{Gr}(l, V)$ is given by $\tilde{\sigma}_{\lambda}=\operatorname{det}\left(\tilde{\sigma}_{\lambda_{i}+j-i}\right)$, where $\tilde{\sigma}_{i}=0$ for $i<0$ or $i>k$.

Proof. Let us prove that if $0 \leqslant i_{j} \leqslant k$ for $1 \leqslant j \leqslant l$ then $\tilde{\sigma}_{i_{1}} \cdot \tilde{\sigma}_{i_{2}} \cdots \tilde{\sigma}_{i_{l}}=$ $\left(\sigma_{i_{1}} \cdot \sigma_{i_{2}} \cdot \ldots \cdot \sigma_{i_{l}}\right) \otimes 1$, i.e. no q-terms show up when the first product is expanded in the quantum ring. Using theorem 4.2 we easily prove by induction on j that the expansion of $\tilde{\sigma}_{i_{1}} \cdot \tilde{\sigma}_{i_{2}} \cdot \ldots \cdot \tilde{\sigma}_{i_{j}}$ involves no q-terms and no partitions of length greater than j.

Another proof of this uses lemma 3.7 and the fact that expansion of $\sigma_{\lambda} \cdot \sigma_{\mu}$ contains no terms of length greater than $l(\lambda)+l(\mu)$. This fact follows from Littlewood-Richardson rule. Here we need this fact only for $\mu=(p)=$ ($p, 0,0, \ldots, 0$), so it follows from the usual Pieri rule.

Since $\operatorname{det}\left(\tilde{\sigma}_{\lambda_{i}+j-i}\right)=\sum_{\pi \in S_{n}}(-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^{n} \tilde{\sigma}_{\lambda_{i}+\pi(i)-i}$ we deduce that

$$
\operatorname{det}\left(\tilde{\sigma}_{\lambda_{i}+j-i}\right)=\operatorname{det}\left(\sigma_{\lambda_{i}+j-i}\right) \otimes 1=\sigma_{\lambda} \otimes 1=\tilde{\sigma}_{\lambda}
$$

5 Presentation via generators and relations

Let $A:=Q H^{*}(X, \mathbb{Z})$. We define $c_{i} \in A$ as $c_{i}=\tilde{\sigma}_{1^{i}}$. For $p \geqslant 1$ we define $\tilde{\sigma}_{p}=\operatorname{det}\left(c_{1+j-i}\right)_{1 \leq i, j \leq p}$. For $p<n$ using Lemma 3.7 or Theorem 4.2 we have $\tilde{\sigma}_{p}=\sigma_{p} \otimes 1$. Hence this definition agrees with previous definition of $\tilde{\sigma}_{p}$. Using this definition of $\tilde{\sigma}_{p}$ and first row decomposition of determinant we get

$$
\begin{equation*}
\sum_{i=1}^{l}(-1)^{i} \tilde{\sigma}_{m-i} c_{i}=0 \tag{6}
\end{equation*}
$$

Lemma 5.1. We have $\tilde{\sigma}_{n}=(-1)^{l-1} q$.

Proof. Using quantum Pieri and (6) we get

$$
\tilde{\sigma}_{n}=(-1)^{l-1} \tilde{\sigma}_{k} \tilde{\sigma}_{1^{l}}=(-1)^{l-1} q .
$$

Proposition 5.2. We have an isomorphism of \mathbb{Z}-algebras

$$
H^{*}(\operatorname{Gr}(l, V), \mathbb{Z}) \cong \mathbb{Z}\left[x_{1}, \ldots, x_{l}, q\right] /\left(y_{k+1}, \ldots, y_{n-1}, y_{n}+(-1)^{l} q\right)
$$

given by $c_{i} \mapsto x_{i}$, here $y_{p}:=\operatorname{det}\left(x_{1+j-i}\right)_{1 \leq i, j \leq p}$.
Proof. Let

$$
B:=\mathbb{Z}\left[x_{1}, \ldots, x_{l}, q\right] /\left(y_{k+1}, \ldots, y_{n-1}, y_{n}+(-1)^{l} q\right)
$$

where $\sigma_{p}=\operatorname{det}\left(c_{1+j-i}\right)_{1 \leq i, j \leq p}$. Using lemma 5.1 we get well-defined map $\phi: B \rightarrow A, \phi\left(x_{i}\right)=c_{i}$. Ring A is a free $\mathbb{Z}[q]$-module. A standard algebraic lemma says that a map $\psi: M \rightarrow N$ of $\mathbb{Z}[q]$-modules with N free is an isomorphism if and only if induced map $\psi^{\prime}: M / q M \rightarrow N / q N$ is an isomorphism. Hence it is enough to prove that $\phi^{\prime}: B / q B \rightarrow A / q A$ is an isomorphism. We have $B / q B=\mathbb{Z}\left[x_{1}, \ldots, x_{l}\right] /\left(y_{k+1}, \ldots, y_{n}\right), A / q A=H^{*}(X, \mathbb{Z}), \phi^{\prime}\left(x_{i}\right)=c_{i}$. Using presentation of $H^{*}(X)$ via generators and relations (theorem 1.8) we deduce that ϕ^{\prime} is an isomorphism.

References

[Be] A. Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), 289305.
[Bu] A. S. Buch, Quantum cohomology of Grassmannians.
[Gr] A. Grothendieck, Thechniques de construction et téoremes d'existence en geometrie algebrique IV: Les schemas de Hilbert, Séminaire Bourbaki 221 (1960/1961).
[N] N. Nitsure, construction of Hilbert and quot schemes.

